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abstract

Modern Internet services are increasingly leveraging on cloud computing for flexible, elas-

tic and on-demand provision. Typically, Quality of Service (QoS) of cloud-based services

can be tuned using different underlying cloud configurations and resources, e.g., number

of threads, CPU and memory etc., which are shared, leased and priced as utilities. This

benefit is fundamentally grounded by autoscaling: an automatic and elastic process that

adapts cloud configurations on-demand according to time-varying workloads. This thesis

proposes a holistic cloud autoscaling framework to effectively and seamlessly address ex-

isting challenges related to different logical aspects of autoscaling, including architecting

autoscaling system, modelling the QoS of cloud-based service, determining the granularity

of control and deciding trade-off autoscaling decisions. The framework takes advantages

of the principles of self-awareness and the related algorithms to adaptively handle the

dynamics, uncertainties, QoS interference and trade-offs on objectives that are exhibited

in the cloud. The major benefit is that, by leveraging the framework, cloud autoscaling

can be effectively achieved without heavy human analysis and design time knowledge.

Through conducting various experiments using RUBiS benchmark and realistic workload

on real cloud setting, this thesis evaluates the effectiveness of the framework based on

various quality indicators and compared with other state-of-the-art approaches.
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Chapter 1

Introduction

Modern IT companies, from large enterprises to small business, are increasingly leverag-

ing on cloud computing to improve their profits and reduce the costs. Unlike many other

similar computing paradigms, such as Cluster computing and Grid computing, cloud

computing provides on-demand access to virtual computing resources, software stacks,

applications and services through the principle of shared infrastructure. Typically, exist-

ing cloud providers offer three hierarchical layers according to the levels of abstraction

[73], these layers are: Software as-a-Service (SaaS), Platform as-a-Service (PaaS) and In-

frastructure as-a-Service (IaaS), as shown in Figure 1.1. In the SaaS layer, the end-users

are allowed to access to various cloud-based services, which are often well-deployed and

readily available to use. These cloud-based services can refer to the entire application

and system, e.g., Gmail; or any conceptual part within an application, e.g., a payroll re-

porting service in a large human-resource management application. In contrast, the PaaS

layer focuses on providing a shared platform that allowing consumers to develop, run and

manage application or services without the complexity of building and maintaining the

infrastructure. This is achieved by offering a software stack, which consists of various con-

figurable software to support the entire cloud-based service life cycle. Examples of these

software include application server where there are configurable number of max threads
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Figure 1.1: The Standard Three Layers Cloud.

and session life time; or database server that permits configurable number of max connec-

tions and buffer size. The IaaS layer offers a shared infrastructure, where the concern is

on provisioning hardware resources, including CPU, memory and bandwidth etc. These

resources are usually controlled by virtulization and packed in a Virtual Machine (VM).

Clearly, the software configurations at PaaS layer and the hardware resources at IaaS

layer serve as the fundamental elements that support the running cloud-based services at

SaaS layer. However, this comes with costs, providing that those software and resources

are priced by the PaaS and IaaS providers as utilities and, therefore, they need to be

leased in a pay-as-you-go manner.

1.1 Research Storyline

One of the pronounced benefits of the cloud, regardless of the levels of abstraction, is

elasticity. In the context of cloud computing, Herbst et al. [73] have defined elasticity as:
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Elasticity measures the degree to which a system is able to adapt to workload

changes by provisioning and de-provisioning resources in an autonomic man-

ner, such that at each point in time the available resources match the current

demand as closely as possible.

whereby the demand is measured according to certain Quality of Service (QoS) attributes

or cost. The QoS, for example, can be response time, throughput or any other non-

functional attribute experienced by the end-users. Herbst et al’s definition reflects the

on-demand nature of elasticity in the cloud; however, they only focus on elasticity at the

IaaS layer where the concern has been on hardware resources (a.k.a. resource elasticity).

As discussed by Dustdar et al. [49], understanding elasticity purely from a viewpoint of

resource is rather restrictive. Thus, in turn, they claim that elasticity in the cloud should

cover two additional dimensions where the focus are the changes in QoS attributes and

cost, which are formally termed as QoS elasticity and cost elasticity respectively.

To ensure high level QoS and cost requirements at the SaaS, we argue that elasticity

should cover all the three layers in the cloud, especially when the software configurations at

PaaS layer can cause considerable interplay and effects on the required hardware resources

at IaaS layer, as evident by our early study [31] and much recent work [26] [139] [99]

[49]. Indeed, when the cloud-based services at SaaS layer suffer dynamic environmental

conditions, such as workloads and the size of the incoming jobs, governing their QoS

and the incurred costs is among the primary concerns of IaaS providers, PaaS providers

and SaaS providers (a.k.a. service owners). This, in turn, requires QoS models that

capture the dynamic, and possibly uncertain sensitivity of QoS to software configurations,

hardware resource and environmental conditions. However, as shown in a recent survey

[13], existing work on QoS modelling is often coarse-grained, focusing on either application

or VM; in addition, the software configurations are rarely considered in conjunction with

the hardware resource and changes to the environmental conditions. In general, there
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is a lack of systematic solution for selecting the most relevant software configurations,

hardware resource and environmental conditions that can significantly influence the QoS.

To study QoS sensitivity for each individual cloud-based service across all the cloud layers,

this thesis looks into a fine-grained, dynamic and online QoS modelling approach to

select the relevant inputs of the QoS and model their magnitude in correlation to QoS

[31][38][33]. Our experimental analysis reveal that, (i) only the important inputs are

useful in QoS modelling; (ii) the performance of algorithms used to build the QoS models

vary depending on scenarios. These observations have motivated us to further investigate

a QoS modelling approach that is not only able to select the important inputs, but also

to identify the best algorithm out of a set of candidates for a given scenario [38][33].

When many cloud-based services run on the shared infrastructure, their QoS can be

interfered with by the dynamic and uncertain resources contention caused by the services’

neighbours, including the co-located services on a VM [112] and the co-hosted VMs on

a Physical Machine (PM) [116]. This phenomenon, referred to as QoS interference ,

has become a non-trivial and challenging issue in the cloud. However, QoS interference,

especially at the co-located services level, has been rarely considered in state-of-the-art

elasticity management approaches. To this end, this thesis explicitly captures the in-

formation of QoS interference at both service- and VM-levels, as well as their interplay

with the other inputs (i.e., software configurations, hardware resources and environment

conditions of a cloud-based service) in the QoS modelling [31][38][33].

In certain predictable scenarios where the environmental condition has strong sea-

sonality and the QoS interference is minimal, the configurations and resources can be

approximately predefined. Nevertheless, for many other cases, for examples, spiked work-

loads and uncertain QoS interference, elasticity can be only enabled by runtime automatic

scaling, or simply autoscaling: an automatic and elastic process, typically running on a

PM, that adapts software configurations and hardware resources provisioning on-demand
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according to the changing environmental conditions. The concrete scaling actions can be

either vertical scaling or horizontal scaling: the former refers to change the configurations

and resources within a PM; the later refers to boots up/shutdown VMs on the other PMs

via migration or replication. The ultimate goal of autoscaling is to continually optimise

the QoS and cost objectives for all cloud-based services; thus their Service Level Agree-

ment (SLA) and budget requirements can be better complied with. We term the situation

as globally-optimal benefit in the cloud when the objectives of all cloud-based ser-

vices reach their optimal results. However, achieving globally-optimal benefit depends

on the right granularity of control that is difficult to ensure in cloud autoscaling. This

is because the QoS sensitivity and the possible interference are dynamic and uncertain

in nature. Existing control, for example, is often statically applied on the entire cloud,

physical machine, virtual machine or service etc. These can lead to scenarios where the

autoscaling approach might result in large overhead or the global benefit is compromised.

By leveraging the QoS models, this thesis introduces a dynamic approach that determines

the right granularity of control, in such a way that the global benefit is optimised while

the overhead is reduced [32][36].

Deciding on the optimal software configurations and hardware resource provisions is

an extremely complex task in autoscaling. It becomes even harder when the dynamic, and

possibly uncertain trade-offs are required for conflicted objectives, e.g., throughput and

cost, and the interfered cloud-based services. However, the most widely applied weighted-

sum formulation in autoscaling decision making might lead to some major issues (i) there

is only coarse-grained information about the trade-off surfaces and (ii) in some cases, it is

very difficult to correctly specify weights, especially for the objectives of interfered cloud-

based services. To resolve these issues, this thesis builds on the right QoS models and

granularity of control; the thesis then explore a dynamic, weights-free trade-offs decision

making approach for cloud autoscaling [34]. The proposed approach optimises for the
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objectives till the points where trade-offs need to be made, and the resulting decision

is guaranteed to achieve well-compromised trade-offs—a large improvements on the

majority of the objectives; while causing relatively small degradations to others.

The research activities presented in this thesis have lead to a novel autoscaling frame-

work in the cloud. In particular, to better handle dynamics, uncertainty, QoS interference

and trade-offs related to the autoscaling process; while reducing human intervention and

the needs of design time knowledge, we leverage the formal principles of self-awareness [18]

by investigating the related architectures, methodologies and algorithms. Particularly, we

contribute the following research outputs.

1. A self-aware and self-adaptive autoscaling architecture that is mapped to the prin-

ciples of self-awareness and thus provides fine-grained representation of the required

knowledge. This calls for different levels of knowledge and self-awareness capabili-

ties, and hence help to better design and select the underlying algorithms [37][35].

2. A self-aware and self-adaptive QoS modelling approach that correlates the QoS with

software configurations, hardware resources, environmental conditions and QoS in-

terference across all the cloud layers. In particular, by acquiring the knowledge

of QoS sensitivity, it adaptively determines the most significant model inputs (in-

cluding QoS interference), the magnitude of models inputs and the best learning

algorithms used to tune the model [31][38][33].

3. A self-aware and self-adaptive approach that clusters the objectives into different

regions which are optimised independently. It aims to achieve globally-optimal

benefit while reducing the overhead in the cloud. This is achieved by knowing the

effects of granularity of control to the global benefit [32].

4. A self-aware and self-adaptive decision making approach that dynamically optimises

and searches for diversified trade-off decisions for autoscaling, from which well-
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compromised trade-offs can be reached. This is achieved by knowing the effects

of decisions (including QoS interference) on objectives, which permits extensive

reasoning and planning in the cloud autoscaling [34].

The remaining of this chapter motivates the need for self-aware and self-adaptive

autoscaling in cloud and discusses the assumptions, research questions, objectives, con-

tributions and organisation of this thesis.

1.2 Motivation

Consider, for example, a growing company named Rbay, which is seeking to deploy nu-

merous services into the cloud for meeting their increasing workloads from the end-users.

To reduce management complexity, they have chosen to deploy their services as SaaS on

a big cloud provider who is offering both PaaS and IaaS solutions. The cloud provider

supports public cloud and it is also currently severing many other consumers. Given the

dynamic and uncertain workloads on Rbay ’s services, their primary concern has been on

the QoS of the services running in cloud, and they expect to use as minimal as possible

cost to achieve the best QoS possible. This is also the same desire for the cloud provider

as they have signed SLA and budget agreement with Rbay, which means that improving

the QoS with minimal cost is likely to earn better reputation, and save the resources for

other consumers. To achieve this, one solution that Rbay can facilitate is autoscaling.

However, for this to come true, they face several difficulties and challenges:

• Rbay are struggling with determining the amount of software configurations and

hardware resources that their services need. The difficulty lies in the fact that

they lack knowledge about the model and correlation between QoS of their services

and the underlying features, including software configurations, hardware resources

and environmental conditions. Theses features are referred to as cloud primitives
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throughout the thesis. The QoS models can be heterogeneous depends on the cloud-

based services and their QoS attributes, providing that the metrics of QoS attributes

and the characteristics of the service tend to be different. More importantly, the

challenge is that the dynamic and uncertain interplays among the cloud primitives

and their combinatorial influences on the QoS have caused the model accuracy

difficult to be preserved. This becomes even more challenging in the presence of

QoS interference, because Rbay are not able to reason about the likely effects of

autoscaling on their services, as well as on those of the other existing consumers.

• When autoscaling in the presence of QoS interference, it is important to consider the

interfered cloud-based services, including their QoS and costs during autoscaling.

This is actually a challenge for the cloud provider since optimising the objectives for

a service in isolation may compromise other services’ objectives. However, reaching

a right granularity of control in autoscaling becomes a difficulty, providing that the

QoS interference is dynamic and uncertain in nature. Existing control, for example,

is often statically applied on the entire cloud, physical machine, virtual machine

or service etc. The cloud provider must be extremely cautious when designing the

autoscaling approach. This is because controlling the entire cloud at a time may

achieve global benefits (i.e., QoS and cost) for all cloud-based services, but likely

to result in large overheads. On the other hand, a local control (e.g., service level)

can often have acceptable overheads while achieving local benefits for some services,

but this may come with the consequence that the QoSs of many other services are

compromised.

• Like many of the other companies, each of the Rbay ’s services has different objec-

tives, including QoS attributes and cost. Now, suppose that the autoscaling system

has decided to improve the throughput of Rbay ’s service-instance Sij by provisioning
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more memory to the underlying VM. Such a decision might not be an issue when

the contention is light. However, as the provision increases, eventually it will result

in throughput degradation to the other service-instances on the co-hosted VMs,

leading to dynamic QoS interference with [26][139][116]. The same issue applies

when we increase the number of service threads for a service-instance, where the

co-located service-instances on the same VM might be interfered [139][99]. These

phenomena imply that there are trade-offs between the throughput of Sij and those

of the other service-instances, which might be owned by different cloud consumers.

It becomes more complex when we need to consider trade-offs between conflicted

objectives, e.g., the throughput and cost of Sij. All these facts can lead to a large

number of dependent objectives in a decision making process (i.e., more than 4).

Given the fluctuated QoS performance of cloud-based service and their interferences,

the key challenge is how to dynamically reason about the effects of different trade-

off decisions. Among the others, there are decisions that lead to the points where

the trade-offs achieve large improvements on the majority of the objectives; while

causing relative small degradations to others. These trade-offs, referred to as well-

compromised trade-offs (a.k.a. knee points), are almost the most preferable

ones.

• Typically, current cloud providers provide a limited set of decisions bundles, each

of which contains a fixed combination of software configurations and hardware re-

sources provisioning. These predefined bundles can restrict the number of possi-

ble trade-off decisions and thus reduce the complexity for human decision making.

However, as stated in a recent survey conducted by Galante et al. [61], renting

bundles cannot and does not reflect the interests of consumers and the actual de-

mand of their cloud-based services. Therefore considering fine-grained, and arbi-

trary combinations of software configurations and hardware resources provisioning
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is an inevitable outcome as the cloud computing paradigm continuous to evolve.

This makes the trade-off decision making problem in autoscaling become even more

challenging as the possible number of trade-off decisions and their diversity tend to

be incredibly large.

Given the dynamic and uncertain nature in cloud, all these challenges and difficulties

need to be handled at runtime. This implies that effectively managing autoscaling in

the cloud tends to be a task that is far beyond the capability of human analysis and

intervention, thus urging for more intelligent foundations and solutions. In this thesis, we

argue that the principle of self-awareness can render itself as a neat solution for addressing

these challenges. In general, self-awareness is concerned with one’s ability to acquire

knowledge about one’s current state and the environment. Such knowledge permits better

reasoning about one’s adaptive behaviour. The benefits of self-awareness, as stated by

Becker et al. [18], include better adaptivity of a system in handling runtime dynamics,

uncertainty, heterogeneity and trade-offs—all belong to the requirements of autoscaling

in the cloud.

1.3 Research Questions and Objectives

To enable self-aware and self-adaptive autoscaling in the cloud and cope with the afore-

mentioned challenges, one of the key tasks is to understand and accurately model the

correlation between QoS attributes and the underlying cloud primitives on-the-fly, tak-

ing QoS interference into account. Such a task, namely self-aware QoS modelling, is the

essential input for the other two subsequent processes for autoscaling, namely self-aware

granularity of control and self-aware trade-off decision making. It is easy to see that, by

acquiring knowledge about QoS models, one can easily isolate which QoS or cost objec-

tives tend to influence others (i.e., conflicted or harmonic objectives) while which are the

ones that can be considered in independent decision making processes. In this way, the
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right granularity can be dynamically determined with reduced overhead while not dam-

aging the global benefit. Presumably, the QoS models and the appropriate granularity of

control promote better trade-off decision making in autoscaling: the former permits the

foundation to dynamically reason about the likely effects of different trade-offs decisions

and thus adjust the decision making process accordingly; while the latter, guarantees

the global benefit and limits the resulting overhead. The computational self-awareness

provides a promising avenue for all these requirements and challenges, and therefore, to

systematically design self-aware algorithms and techniques for the three processes, the

fundamental task is to study how the general principle of self-awareness can be applied in

an autoscaling system. This task, namely self-aware autoscaling architecture, is concerned

with architecting the self-awareness capabilities and autoscaling in the cloud. As a result,

the core research question of this thesis towards self-aware and self-adaptive autoscaling

in the cloud is:

How can self-awareness and the related algorithms be incorporated into the

process of elastically autoscaling cloud-based services, such that the autoscal-

ing system is able to handle runtime dynamics, uncertainties and trade-offs

exhibited in the cloud? What are the benefits of self-awareness and to what

extent can it be beneficial, when compared to approaches with no or limited

self-awareness?

Specifically, as shown in Table 1.1, more detailed research questions can be discussed in

different logical aspects that facilitate autoscaling, i.e., autoscaling architecture, cloud

QoS modelling, granularity of control in the cloud and trade-off decision making.

1.3.1 Objectives

Driven by the aforementioned research questions, this thesis aims to investigate how to

build more intelligent and dependable autoscaling systems in the cloud by leveraging self-

11



Table 1.1: The Detailed Research Questions of The Thesis.

Autoscaling architecture

RQ 1.1. How to incorporate and map the self-awareness capabilities to autoscaling
in the cloud?

RQ 1.2. How to architect self-aware autoscaling system? What are the benefits we
can expect from this enriched architecture?

Cloud QoS modelling

RQ 2.1. How to dynamically select the important, yet uncertain cloud primitives
(e.g., software configurations, hardware resources and environmental con-
ditions) when modelling the QoS for cloud-based services. Which cloud
primitives tend to be significant while which are the irrelevant ones? When
these cloud primitives should be considered in the models?

RQ 2.2. How to dynamically model and quantify the uncertain magnitude of cloud
primitives in the correlation between them and a QoS attribute.

RQ 2.3. How to incorporate the dynamic and uncertain information about QoS in-
terference into the models.

RQ 2.4. How to ensure the accuracy of the QoS models.

Granularity of control in the cloud

RQ 3.1. What are the effects of control granularity on globally-optimal result (i.e.,
result with respect to QoS and cost of all cloud-based services) and the
overhead in cloud?

RQ 3.2. Whether local control (e.g., service level) can achieve similar global benefit
to global control (e.g., cloud level)?

RQ 3.3. How to handle the dynamics and uncertainty associated with the granularity
of control in cloud and its effects on the global benefit.

Trade-off decision making in autoscaling

RQ 4.1. Given the dynamic and uncertain nature of the autoscaling decision making
problem in cloud, how to dynamically search and optimise for the uncer-
tain trade-off decisions, considering the naturally conflicted objectives and
uncertain QoS interference?

RQ 4.2. How to dynamically reason about the effects of decisions on QoS and cost
objectives, and the uncertain trade-offs considering their requirements.

RQ 4.2. How to quantify the extent of compromises in the trade-off? How to dy-
namically determine the well-compromised trade-off.

awareness and related algorithms. To achieve such, we have identified several objectives,

as shown in Table 1.2.
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Table 1.2: The Objectives of The Thesis.

The Targeted RQ Objective

RQ 1.1. Investigate the self-awareness capabilities and their mapping to
the necessary components of autoscaling in the cloud. The map-
ping should express how various levels of self-awareness and
knowledge can be used to address the challenges in autoscaling.

RQ 1.2. Drawing on the mapping, blueprint an architecture for self-aware
and self-adaptive autoscaling.

RQ 2.1. and RQ
2.3.

Study the sensitivity of the QoS models’ accuracy to the se-
lected cloud primitives while considering the QoS interference
in cloud. Quantify the relative importance and significance of
selected cloud primitives in the correlation.

RQ 2.2., RQ 2.3.
and RQ 2.4.

Look into approaches that model the QoS sensitivity for cloud-
based services with respect to the cloud primitives. This is con-
cerned with understanding which (e.g., are CPU and throughput
correlated?), when (i.e., at which point in time they are corre-
lated?) and how (i.e., the magnitude of primitives in correlation)
the primitives correlate with QoS. Particularly, it is necessary
to examine and compare the major QoS modelling approaches,
which are currently applied in the cloud, in terms of their accu-
racy and complexity. In this way, we intend to adopt and combine
potential approaches for the case of autoscaling with improved
accuracy and acceptable complexity.

RQ 3.1., RQ 3.2.
and RQ 3.3.

Investigate approaches that dynamically determine the right
granularity of control for autoscaling in the cloud through rea-
soning about the effects of granularity on the global benefit. The
ultimate goal is to understand the balance between the effects on
global benefit and overhead achieved by the autoscaling system.

RQ 4.1. and RQ
4.2.

Explore approaches that dynamically optimise and search for
trade-off decision in autoscaling to reduce the complexity of hu-
man intervention; while considering the SLAs and cost require-
ments. Given the potentially large amount of possible decisions
for autoscaling, the approach should be efficient for reasoning
about the effects of autoscaling decision on services’ objectives
and their trade-offs at runtime.

RQ 4.3. Identify a method to quantify the extents of compromises
in trade-offs and build a mechanism that converges to well-
compromised trade-offs without human intervention.
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1.4 Scope and Assumptions

In the following, we codify the scope of this thesis through several assumptions.

• In this thesis, cloud-based services can refer to the entire application and system,

e.g., Gmail; or any conceptual part within an application, e.g., a payroll report-

ing service in a large human-resource management application. We assume that

applications in the cloud are composed of services, each has different QoS require-

ments and external environment changes (e.g., changes in workload). The hardware

resource can be shared amongst the services (e.g., CPU of the VM); whereas the

software configurations are tuneable and can be specific to one service (e.g., threads

of a service), as supported by many real-world applications (e.g., the Weblogic [3])

and standards (e.g., the JAX-WS standard [4]). This assumption promotes fine-

grained differentiation and control for the cloud-based services. More importantly,

this assumption about service permit to maximize the flexibility of an autoscaling

system such that it can be customized to work on the entire application or any parts

of it as necessary.

• Often, multi-tier applications and services in the cloud can have multiple replicas

for various purposes, e.g., service differentiation and load balancing etc. Therefore

we assume that each tier in a multi-tier application, consisting of concrete services,

can have multiple replicas deployed on different VMs or even PMs. In this thesis,

we refer to the replicas of concrete services as service-instances . The jth instance

of the ith cloud-based service is denoted as Sij. We aim to optimise the objectives

for all those service-instances in the cloud.

• We do not consider the trade-off on scaling actions, i.e., vertical scaling vs. horizon-

tal scaling. The primary concern of this thesis has been on reaching an autoscaling
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decision that contains the right combination of software configurations and hard-

ware resources for all cloud-based services. In our autoscaling framework, vertical

scaling always takes higher priority, providing that modern hypervisors (e.g., Xen

[6]) can achieve dynamic vertical scaling with negligible overheads. The resources

on a PM are provisioned to the VMs in a first-come-first-serve basis. The horizontal

scaling, on the other hand, is only triggered when the resources of the PM tends to

be exhausted. We leave the study on the effects of scaling actions for future work.

• Since we tackle the autoscaling problem for the benefits of cloud consumers (i.e.,

service owners), we do not consider the work that focuses on VM to PM consolida-

tion, VM creation, VM termination, VM migration and VM replication unless they

explicitly consider autoscaling as a key contribution of their research.

1.5 Research Methodology

The research methodology of the thesis can be seen as similar to the Design Science

Research Methodology [109], which is an iterative process. The main processing steps can

be discussed as the following:

• Understanding of the problem: The first step is to gain conceptual understanding

of the problem domain, i.e., autoscaling in the cloud. This is achieved by a large

amount of literature review. At the very early stage of the research, the concrete

research direction may not be obvious, thus a general understanding of a wide ranges

of problem in cloud computing is needed. As the knowledge is built, the research

direction is then gradually converge to the related problem for autoscaling in the

cloud, which is now the formal problem addressed in this thesis

• Suggestions and Hypothesis: In this step, potential issues and gaps in current re-

search are identified. These issues are the keys that should be investigated clearly
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when reading each related work. Some hypothesis about the possible solution to

those issues are made, and they can influence the search key words in the literature

review process. For example, when machine learning is identified as one possible so-

lution to the problem of QoS modeling in the cloud, then a new phase of search key

words can be added: machine learning AND cloud computing AND QoS modelling

OR performance modelling

• Prototyping: This step requires implementation and development work to realize

the concepts developed in the previous stage. It also require close investigation of

some related techniques form other fields, e.g., machine learning and optimization

algorithms. It is worth noting that from this stage forward, the research can go

back to the first step if serious issues (e.g., wrong understanding of the problem)

are found or incorrect hypothesis is made in the previous step.

• Evaluation: Once the prototype has been completed, qualitative and quantitative

evaluation can be carried out. In particular, qualitative evaluation is achieved by

examining how well the prototype realize the concepts against design criteria, while

quantitative evaluation is based on experiments run in a controlled environments.

When the results do not meet with expectations, then it is necessary to iterative

back to step 1 or 2 for invalidating the knowledge and hypothesis.

• Conclusion: The final step is concerned with formally positioning the contributions

and reporting on the results found in the research process.

1.6 Contributions

There are numbers of steps that have been taken to tackle the aforementioned research

questions and objectives. Collectively, as an ultimate result of this thesis, those steps

have leaded to a holistic, self-aware and self-adaptive autoscaling framework that is able
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to optimise the QoS and costs for all cloud-based services, with limited human intervention

and design time knowledge. This framework consists of different components, each deals

with a different category of research questions presented in Section 1.3. Particularly, this

thesis draws several novel contributions, which are listed in Table 1.3.

Table 1.3: The Detailed Contributions of The Thesis

Contribution Addressed
RQ

1. A set of common criteria that can be used to assessed and compared
existing autoscaling approach in the cloud. Additionally, a taxonomy
is produced deriving from these criteria and the corresponding compar-
isons. Finally, a survey that provides the key background information,
strengths, weakness and categorisation of existing approaches for au-
toscaling in the cloud.
2. Autoscaling architecture leverages the self-awareness principle and
capabilities.

RQ 1.1. and
RQ 1.2.

• A mapping between self-awareness capabilities and the important
components in autoscaling by leveraging the general principle of self-
awareness. This mapping justifies the need of self-awareness capability
at different levels and provides a concise understanding about how self-
awareness can be applied to resolve the challenges for autoscaling in
the cloud.

• An autoscaling architecture that is built using self-aware patterns
[39]. The proposed architecture not only describes how the self-
awareness capabilities are encapsulated into components, but also ex-
presses their potential interactions, which help to better consolidate
different levels of self-awareness.

• By leveraging self-awareness, the autoscaling framework realises bi-
directional adaptation. That is to say, it is not only able to adapt
the underlying cloud-based services and VMs, but also able to fur-
ther consolidate itself by acquiring the knowledge about itself and the
environment through different self-awareness capabilities.

3. Self-aware and self-adaptive QoS modelling approach for autoscaling
in the cloud.

RQ 2.1. to
RQ 2.4.
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• A fine-grained and generic QoS model, which is designed to handle
dynamic and uncertain QoS sensitivity; and to incorporate information
of the uncertain QoS interference caused by the cloud-based services
co-located on a VM and the VMs co-hosted on a PM.

• An in-depth analysis on the correlations of selected cloud primi-
tives to the model accuracy in the cloud; in particular, this analysis
shows how the model accuracy can be affected by the selected cloud
primitives.

• A self-aware and self-adaptive technique, namely hybrid dual-
learners, to determine which and the cloud primitives correlates with
the QoS on the fly using information theory [130]. This technique has
been diverged into four variations, which are experimentally compared
and evaluated.

• A suitability analysis of different learning algorithm for modelling
QoS against different QoS attributes. Particularly, three widely used
machine learning algorithms are examined, including Artificial Neural
Network (ANN) [119], Auto-Regressive Moving Average with eXoge-
nous inputs model (ARMAX) [22] and Regression Tree (RT) [117].

• A self-aware and self-adaptive solution, namely adaptive multi-
learners, to dynamically model how the cloud primitives correlates
with the QoS. The proposed solution is not only able to dynamically
correlate the selected cloud primitives to the QoS, but also to adap-
tively select the best learning algorithm and its resulting model during
prediction in cloud.

• The QoS modelling approach is experimentally evaluated using RU-
BiS [5] benchmark and FIFA 98 workload trend [14]. This is achieved
by comparing to various other state-of-the-art approaches; and un-
der four commonly used QoS attributes, these are: Response Time,
Throughput, Reliability and Availability. The evaluation criteria have
been on accuracy, stability, sensitivity to the online data size and effi-
ciency.
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4. Self-aware and self-adaptive mechanism that adapts the granularity
of control in autoscaling.

RQ 3.1. to
RQ 3.3.

• A self-aware, self-adaptive and two-phase region clustering mech-
anism that clusters the QoS and cost objectives into sensitivity inde-
pendent regions. The basic principle behind the notions of sensitivity
independent regions is that it is possible to reach globally-optimal re-
sult (with respect to the QoS and cost of all cloud-based services) by
asynchronously finding locally-optimal results within each sensitivity
independent region. This can eventually shrink the search space and
reduce overhead.

• The mechanism is experimentally evaluated via hypothetical sce-
narios, which contain different numbers of services. This is achieved
by comparing with existing solutions that statically operate on dif-
ferent fixed granularities of control, including cloud-level, PM-level,
VM-level and service-level. The achieved globally-optimal result and
the produced overhead are assessed.

5 Self-aware and self-adaptive trade-off decision making approach for
autoscaling in the cloud.

RQ 4.1. to
RQ 4.3.

• In light of many successful applications of metaheuristics algorithms
in the cloud, we present self-aware and self-adaptive decision making
process where the core is a Multi-Objective Ant Colony Optimisation
(MOACO) algorithm that designed to search the optimal (or near-
optimal) trade-offs decisions for autoscaling in the cloud. This ap-
proach eliminates the need for specifying weights in the objective for-
mulation and is able to handle trade-offs caused by naturally conflicted
objectives and QoS interference. In addition, the stochastic nature of
MOACO allows it to achieve good coverage in the trade-offs surface,
and thus improving diversity in the trade-offs decisions. The search
process in our MOACO is similar to conduct many single objective op-
timisations in one run, which aims to optimise and make trade-offs for
a larger number of objectives than the commonly used 2 to 4 objectives
(i.e., up to 30 objectives in our experiments).

19



• A triple mechanism, namely compromise-dominance, for finding
well-compromised trade-offs based on superiority and fairness of the
decisions. The former is measured by pareto-dominance [67], and the
latter is achieved via nash-dominance [108] and the distance of de-
cisions measurement. The mechanism is able to dynamically achieve
well-balanced improvements and degradations for the objectives, with-
out being guided by weights in the objective formulation.

• The trade-off decision making approach is experimentally evalu-
ated, again, using RUBiS [5] benchmark and FIFA 98 workload trend
[14]. This is achieved by comparing our results to those of four widely
used approaches for autoscaling: rule-based, single-objective heuristic
based, single-objective randomised and multi-objective genetic algo-
rithm based; and under four commonly used QoS attributes, these are:
Response Time, Throughput, Reliability and Availability. These ap-
proaches are critically examined in terms of their quality of trade-offs,
violations on SLA and budget requirements, over-/under-provisioning
and overhead.

1.7 Publications and Thesis Organisation

The work presented in this thesis has been to a degree or completely derived from the set

of papers published during the course of the PhD candidature. These published papers are

listed in Table 1.4. Nevertheless, this thesis should be regarded as the definitive account

of the work. It is worth mentioning that for all the joint papers, the PhD candidate

has contributed to nearly all the content of the work (i.e., more than 95%). The other

co-authors are credited for their suggestions, discussions and comments on the proposing

ideas and experiments.

Figure 1.2 shows the relationship between the chapters and which logical aspect of the

autoscaling they belong to. The remainder of this thesis is organised as follows:

• Chapter 2 presents a taxonomy and survey about autoscaling in the cloud, including

detailed background, existing approaches according to the categorisation of research
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T. Chen, R. Bahsoon and G. Theodoropoulos. A Decentralized Archi-
tecture for Dynamic QoS Optimization in Cloud-based DDDAS. In pro-
ceeding of International Conference on Computational Science (ICCS),
Procedia of Computer Science, Elsevier Science, 2013.

X X

T. Chen and R. Bahsoon. Self-Adaptive and Sensitivity-Aware QoS Mod-
eling for the Cloud. IIn proceeding of the 8th International ACM/IEEE
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), in conjunction with the 35th International Confer-
ence on Software Engineering (ICSE), San Francisco, CA, 2013.

X X

T. Chen, R. Bahsoon and A-R H. Tawil. Scalable Service-Oriented Repli-
cation with Flexible Consistency Guarantee in the Cloud. Information
Sciences, Elsevier, vol. 264, 2014.

X X

T. Chen and R. Bahsoon. Symbiotic and Sensitivity-Aware Architec-
ture for Globally-Optimal Benefit in Self-Adaptive Cloud. In proceeding
of the 9th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), in conjunction with the 36th
International Conference on Software Engineering (ICSE), India, 2014.

X X

T. Chen, F. Faniyi, R. Bahsoon, P.R. Lewis, X. Yao, L.L. Minku, and L.
Esterle. The Handbook of Engineering Self-Aware and Self-Expressive
Systems. Technical Report, Aug. 2014 arXiv:1409.1793 [cs.SE]

X

T. Chen, R. Bahsoon and X. Yao. Online QoS Modeling in the Cloud: A
Hybrid and Adaptive Multi-Learners Approach. In proceeding of the 7th
IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), London, UK. 2014.

X X

T. Chen and R. Bahsoon. Towards A Smarter Cloud: Self-Aware Au-
toscaling of Cloud Configurations and Resources, IEEE Computer, vol.
48, no. 9, 2015.

X X

T. Chen and R. Bahsoon. Self-Adaptive and Online QoS Modeling for
Cloud-Based Software Services. IEEE Transactions on Software Engi-
neering (This paper is both accepted and under review because it was
accepted subject to revision, which we have submitted.)

X X X

T. Chen and R. Bahsoon. Self-Adaptive Trade-off Decision Making for
Autoscaling Cloud-Based Services. IEEE Transactions on Services Com-
puting, 2015, doi:10.1109/TSC.2015.2499770

X X
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questions and the positioning of this thesis in regards to existing work.

• The mapping of self-awareness capabilities to autoscaling in the cloud and the pro-

posed architecture are specified in Chapter 3, which is partially derived from:

– T. Chen, R. Bahsoon and G. Theodoropoulos. A Decentralized Architecture

for Dynamic QoS Optimization in Cloud-based DDDAS. In proceeding of Inter-

national Conference on Computational Science, Procedia of Computer Science,

Elsevier Science, 2013.

– T. Chen and R. Bahsoon. Towards A Smarter Cloud: Self-Aware Autoscaling

of Cloud Configurations and Resources, IEEE Computer, vol. 48, no. 9, 2015.

– T. Chen, F. Faniyi, R. Bahsoon, P.R. Lewis, X. Yao, L.L. Minku, and L. Es-

terle. The Handbook of Engineering Self-Aware and Self-Expressive Systems.

Aug. 2014 arXiv:1409.1793 [cs.SE]
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• Chapter 4 describes the QoS modelling approach for correlating QoS of cloud-based

services to the underlying cloud primitives. This chapter is partially derived from:

– T. Chen and R. Bahsoon. Self-Adaptive and Sensitivity-Aware QoS Modeling

for the Cloud. In proceeding of the 8th International ACM/IEEE Symposium

on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),

in conjunction with the 35th International Conference on Software Engineering

(ICSE), San Francisco, CA, 2013.

– T. Chen and R. Bahsoon. Self-Adaptive and Online QoS Modeling for Cloud-

Based Software Services, IEEE Transactions on Software Engineering, accepted

with major revision.

• Drawing on experimental observations, the QoS modelling approach is further im-

proved for better accuracy, applicability and less complexity, as described in Chapter

5. This chapter is derived from:

– T. Chen, R. Bahsoon and X. Yao. Online QoS Modeling in the Cloud: A

Hybrid and Adaptive Multi-Learners Approach. In proceeding of the 7th

IEEE/ACM International Conference on Utility and Cloud Computing (UCC),

London, UK. 2014.

– T. Chen and R. Bahsoon. Self-Adaptive and Online QoS Modeling for Cloud-

Based Software Services, IEEE Transactions on Software Engineering, accepted

with major revision.

• Chapter 6 presents the mechanism for dynamically determining the right granularity

of control when autoscaling in the cloud. This chapter is derived from:

– T. Chen and R. Bahsoon. Symbiotic and Sensitivity-Aware Architecture for

Globally-Optimal Benefit in Self-Adaptive Cloud. In proceeding of the 9th In-
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ternational Symposium on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS), in conjunction with the 36th International Conference on

Software Engineering (ICSE), India, 2014.

– T. Chen, R. Bahsoon and A-R H. Tawil. Scalable Service-Oriented Replica-

tion with Flexible Consistency Guarantee in the Cloud. Information Sciences,

Elsevier, vol. 264, 2014.

• The trade-off decision making challenges for autoscaling in the cloud are investigated

in Chapter 7, which is derived from:

– T. Chen and R. Bahsoon. Self-Adaptive Trade-off Decision Making for Au-

toscaling for Cloud-Based Services, IEEE Transactions on Services Computing,

accepted as regular paper, to appear.

• A qualitative and reflective evaluation of the thesis with respect to different cri-

teria of cloud autoscaling, including dynamics, uncertainty, scalability, flexibility,

complexity of application and practical deployment, is presented in Chapter 8.

• This thesis is concluded in Chapter 9 with detailed remarks and future research

directions.
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Chapter 2

Taxonomy and Survey of

Autoscaling in Cloud

2.1 Background

2.1.1 Self-Adaptivity and Self-Awareness

The broad category of automatic and adaptive systems aim to deal with the dynamics that

the system exhibited without human intervention; but this does not necessarily involve

uncertainty, i.e., there are changes related to the system but it is easy to know when they

would occur and the extent of these changes. Self-adaptivity, being a sub-category, is a

particular capability of the system to handle both dynamics and uncertainty. Here, self-

adaptive systems refer to the systems that are able to adjust their behaviours according to

the perception of the uncertain environment and its own state. According to the adaptive

behaviors, self-adaptivity can be regarded as the following four properties, each of which

covers a specific set of goals, as explicitly discussed and categorized in many surveys, e.g.,

[118]:

• Self-configuring
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The capability of reconfiguring automatically and dynamically in response to changes

by installing, updating, integrating, and composing/decomposing software entities.

• Self-healing

This is the capability of discovering, diagnosing, and reacting to disruptions. It can

also anticipate potential problems, and accordingly take proper actions to prevent

a failure. Self-diagnosing refers to diagnosing errors, faults, and failures, while self-

repairing focuses on recovery from them.

• Self-optimizing

This is also called self-tuning or self-adjusting, is the capability of managing perfor-

mance and resource allocation in order to satisfy the requirements of different users.

End-to-end response time, throughput, utilisation, and workload are examples of

important concerns related to this property.

• Self-protecting

This is the capability of detecting security breaches and recovering from their effects.

It has two aspects, namely defending the system against malicious attacks, and

anticipating problems and taking actions to avoid them or to mitigate their effects.

Self-awareness, on the other hand, is concerned with the system’s ability to acquire

knowledge about its current state and the environment. Such knowledge permits better

reasoning about the system’s adaptive behaviours. Consequently, self-awareness is often

seen as the lowest level of abstraction of self-adaptivity [118], and thus it can improve

the perception and self-adaptivity of a system, as surveyed in [92]. Inspired from the

psychology domain, Becker et al. [18] have classified self-awareness of a computing system

into the following general capabilities (they have used node to represent any conceptual

part of a system being managed):
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• Stimulus-aware

A node is stimulus-aware if it has knowledge of stimuli. The node is not able to

distinguish between the sources of stimuli. It is a prerequisite for all other levels of

self-awareness.

• Interaction-aware

A node is interaction-aware if it has knowledge that stimuli and its own actions

form part of interactions with other nodes and the environment. It has knowledge

via feedback loops that its actions can provoke, generate or cause specific reactions

from the social or physical environment.

• Time-aware

A node is time-aware if it has knowledge of historical and/or likely future phe-

nomena. Implementing time-awareness may involve the node possessing an explicit

memory, capabilities of time series modelling and/or anticipation.

• Goal-aware

A node is goal-aware if it has knowledge of current goals, objectives, preferences and

constraints. It is important to note that there is a difference between a goal existing

implicitly in the design of a node, and the node having knowledge of that goal in

such a way that it can reason about it. The former does not describe goal-awareness;

the latter does.

• Meta-self-aware

A node is meta-self-aware if it has knowledge of its own capability(ies) of awareness

and the degree of complexity with which the capability(ies) are exercised. Such

awareness permits a node to reason about the benefits and costs of maintaining a

certain capability of awareness (and degree of complexity with which it exercises

this level).
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The benefits that self-awareness introduces for computing systems, including better

solution for runtime dynamics and uncertainty, heterogeneity, and trade-offs on objectives,

have rendered it as a neat solution for the challenges of cloud autoscaling as we have

discussed in Chapter 1.

2.1.2 Autoscaling in Cloud

From the literal meaning of the word ”autoscaling”, it is obvious that the process is dy-

namic and requires the system to adapt subject to the uncertain, changing state of the

services being managed and the environment. In such a way, the cloud-based services can

be ’expanded’ and ’shrink’ according to the environmental conditions at runtime. Given

that it is almost impossible to access the low level details of cloud-based services (e.g.,

their codes and algorithms) at runtime, an autoscaling system often consist of two physical

parts: a managing part containing the autoscaling logic and a manageable part includ-

ing services and VMs running in the cloud. The two physical parts are seamlessly and

transparently connected for realising the entire autoscaling process. This characteristic

has made autoscaling systems well-suited to the broad category of self-adaptive systems,

and the two parts structure of adaptation is known as the external adaptation [40] [118].

Depending on the given QoS attributes and the manageable cloud primitives, an autoscal-

ing system can cover self-configuring, self-healing, self-optimising and self-protecting, or

any combination of those, from the notion of self-adaptivity. A recent survey [92] has

established the evidences that self-awareness can improve a system that requires self-

adaptivity, and therefore achieving self-awareness is a promising way to enable better

autoscaling systems in cloud.

The external adaptation of an autoscaling system is shown in Figure 2.1. As we can see,

the core of an autoscaling system in the cloud is the autoscaling logic, which can consist

of multiple logical aspects. The simplest form of autoscaling system covers monitoring
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Figure 2.1: The Simplest Form of An Autoscaling System.

and scaling aspect in its autoscaling logic: the former gathers the service’s or application’s

current state while the latter utilises the information to decide an action. However, such a

simplified form of autoscaling system tends to be limited, since it cannot effectively handle

the increasing runtime complexity of the cloud environment, including, e.g., dynamic and

uncertainty caused by workload, the QoS performance and heterogeneity of cloud-based

services. Given the shared infrastructure of cloud, the autoscaling process should be

aware of and be able to handle QoS interference. This is because improving the QoS

performance of a service may likely to downgrade that of its neighbouring services and

VMs, which will negatively affect the overall quality of autoscaling and elasticity.

To improve the quality of adaptation, modern autoscaling systems often additionally

cover other more sophisticated aspects, including modelling, determining granularity of

control and decision making. The modelling is concerned with the model of QoS, en-
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vironment conditions (e.g., workload) and demand of the control knobs (e.g., software

configurations and hardware resources). The resulting models are a powerful tool to as-

sist the autoscaling decision making process. Without loss of generality, in this thesis,

we term both control knobs and environment conditions in the cloud as cloud primitives.

In such context, we further decompose the notion of primitives into two major domains:

these are Control Primitive (CP) and Environmental Primitive (EP). Control

Primitives are the internal control knobs and can be either software or hardware, which

can be managed by the cloud providers to support QoS. Specifically, software control

primitives are software tactics and the key configurations in cloud; such as the number

of threads in the thread pool of a service/application, the buffer size and load balancing

policies etc. Whereas, hardware control primitives are computational resources, such as

CPU and memory. Software and hardware control primitives rely on the PaaS and IaaS

layers respectively. In particular, it is non-trivial to consider software control primitives

when autoscaling in the cloud as they have been shown to be important features for QoS

[26] [139] [99]. On the other hand, Environmental Primitives refer to the external stim-

uli that cause dynamics and uncertainties in the cloud. These, for example, can be the

workload and unpredictable incoming data etc. If the cloud provider is able to control

the presence of the stimulus, then these can be considered as control primitives. These

models can often assist and improve the autoscaling decision making. It is worth noting

that the examples of primitives listed above are not exhaustive, Ghanbari et al. [66] have

provided a more completed and detailed list of the possible control primitives in cloud.

Determining granularity of control in the autoscaling logic is essential to ensure the

benefit (e.g, QoS and cost objectives) for all cloud-based service. It is concerned with

understanding whether certain objectives can be considered in isolation with some of the

others. This is because objective-dependency (i.e., conflicted or harmonic objectives) often

exist in the decisions making process, which implies that the overall quality of autoscaling
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can be significantly affected by the inclusion of conflicted or harmonic objectives in a

decision making process, hence rendering it as a complex task. This is especially true for

the shared infrastructure of cloud where objective-dependency exists for both intra- and

inter-services. That is to say, objective-dependency is not only caused by the nature of

objectives (intra- service), e.g, throughput and cost objective of a service; but also by the

QoS interference (inter-services) due to the co-located services on a VM and co-hosted

VMs on a PM [26] [139] [99] [116].

The final logical aspect in autoscaling logic is the dynamic decision making process that

produces the optimal (or near-optimal) decision, which consists of the newly configured

values of the related control primitives, for all the related objectives. In the presence

of objective dependency, autoscaling decision making requires to resolve complex trade-

offs, subject to the SLA and budget requirements. The trade-off decision can be then

executed using either vertical scaling and/or horizontal scaling actions, which adapt the

cloud-based services and/or VMs correspondingly.

In the following sections, we provide survey and taxonomy for the most influent and

recent work that is related to this thesis. Particularly, we present the review and discus-

sions based on the key logical aspects for autoscaling in the cloud, which are architectural

pattern, QoS modelling, granularity of control and decision making. We then position

this thesis by discussing how our work differ from those existing approaches.

2.2 Architectural Pattern

Autoscaling architecture is the most essential element of an autoscaling system in the

cloud. It describes the structure of the autoscaling process, the interaction between

components and the modularisation of the important logical aspects in autoscaling. In the

following, we survey the key architectural patterns that have been applied for autoscaling

in the cloud. In particular, we classify them into three categories based on their basic form;
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Figure 2.2: The Taxonomy of Architectural Patterns used in Autoscaling.

these are Feedback Loop Control [25], Observe-Decide-Act [74] and Monitor-Analysis-

Plan-Execute [76], where the latter two are essentially detailed variations of the former

one. The classification of those architectural patterns is the result obtained from literature

review. As one of the key outputs, we have identified that those three architectural

patterns are predominantly applied for autoscaling system in the cloud. The taxonomy

has been illustrated in Figure 2.2.

2.2.1 Feedback Loop Control

Feedback Loop Control is the most general architectural pattern for controlling self-

adaptive systems, including the autoscaling systems. It is usually a closed-form loop

made up of the managing system itself and the path transmitting its origin (e.g., a sen-

sor) to its destination (e.g., an actuator). Here, we further divide the pattern in terms of
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whether single or multiple loops are used.

Single Loop Control

Single loop control is the simplest, yet the most commonly used pattern for autoscaling

in the cloud due to its flexibility. The most common practice with single loop control is to

build a feedback loop where the core is the decision making component and an optional

QoS modelling component, e.g., Ferretti et al. [56] , CloudOpt [95], SmartSLA [132],

Padala et al [107], Kateb et al [51], Jiang et al. [77], CLOUDFARM [106], Grandhi et

al. [63]. Some other work has included an additional component for workload or demand

prediction based on either offline profiling, e.g., Jiang et al. [78] and Fernandez et al. [55],

or online learning, e.g., Kingfisher [121], Gambi et al. [62], Chihi et al. [44] and PRESS

[68].

Open feedback loop exists, as presented in Cloudine [60], where the scaling actions are

partially triggered by user requests. In particular, they use a centralised Resource and

Execution Manager to handle all the scaling actions. Apart from the general autoscaling

architecture, other efforts are particularly designed upon specific cloud providers [71],

[138], [81], [142]. For example, Zhang et al. [138] and Kabir and Chiu [81] propose to use

a simple feedback loop for architecting autoscaling system, which is heavily tied to the

properties of Amazon EC2 and S3. Other applications of single loop control, which are

worth mentioning, include: VScale [137] is a feedback based framework that particularly

focus on vertical scaling of VM in the cloud. It is deployed in a decentralised manner where

there is a dedicated instance running on each PM. iBoolean [113] is a feedback control

approach for autoscaling hardware resource in the cloud. It is designed as a distributed

management framework, in which each individual VM initialise its own management.

There are architectures using single loop control where the core is classical control

theory [12], [70], [96], [10]. Particularly, Anglano et al. [12] present a fuzzilized feedback

control for autoscaling in the cloud. It is a typical controller using fuzzy theory driven by
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application performance. Guo et al. [70] also present a fuzzy logic based feedback control.

However, it only intend to scale the software control primitives.

Multiple Loop Control

Unlike the single loop control approach, it is possible to use multiple loops and con-

trollers for autoscaling in the cloud. Here, multiple feedback loops operate in different

levels of the architecture, e.g., one operates at the cloud level while the others operate

on each VM. The benefit is that multiple loops provide low coupling in the design of the

loops. Notably, multiple loop control can be used to separate global and local controls

[82], [15], [16], [104]. Among others, [82] apply a decentralised feedback control for au-

toscaling CPU in the cloud. Although it aims for individual applications, the controllers

actually operate on each tier of an application. Different controllers do not need to in-

teract with each others. ARUVE [15] utilises a global controller in conjunction with the

local controller to form multiple feedback loops. The local controllers are decentralised

on each PM while the global controller is centralised.

Multiple loop control is also effective for isolating the logical aspects of autoscaling and

management in the cloud [131], [134], [85], [43], [52], [126], [135] [26], [141]. For example,

Emeakaroha et al. [52] has also used multiple feedback loops. In particular, they use a

global feedback loop consisting of three local feedbacks, each of which operate on SaaS,

PaaS and IaaS layer. Wang, Xu and Zhao [126] propose a two layer feedback control for

autoscaling in the cloud. The first layer, termed guest-to-host optimisation, controls the

hardware resources, e.g., CPU and memory. Subsequently, the host-to-guest optimisation

adapts the software configuration accordingly.

Overall, existing work adopts feedback loop control for its simplicity and flexibility.

However, instead of designing autoscaling with a clear architectural blueprint beforehand,

they utilise a bottom-up approach where the design of autoscaling system starts off from

the underlying techniques and algorithms. Such design can limit the consideration of re-
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quired knowledge for the autoscaling system to perform adaptations, or the consideration

is rather simple and coarse-grained, as they do not express what level of knowledge is

required at which logical aspect of the system, and how they can be beneficial for the

adaptation.

2.2.2 Observe-Decide-Act

Observe-Decide-Act (ODA) loop [74] is considered as an extended pattern of the feedback

loop control, and it is concerned with the system monitoring itself and its environment,

making decisions about how to adapt behaviour using a set of available actions. A unique

Decide component separates it from the feedback loop control, as it explicitly requires to

perform reasoning about the effects of adaptation on the system’s goals and objectives.

While an ODA loop is most commonly applied for self-adaptive systems in general, only

few work (e.g., [75]) has included it for the design of autoscaling system in the cloud.

This is because one important aspect of ODA is to define the effects of human activities

on the adaptive behaviours, which is a difficult practice for autoscaling in the cloud.

SEEC [74], being the very first work to introduce ODA, is a general framework for

self-aware and self-adaptive systems. It applies ODA for decoupling the loops to different

roles (i.e., application developer, system developer, and the SEEC runtime decision in-

frastructure) in the development life-cycle, each role focuses on one or more steps in ODA.

[122] adopt an ODA loop to manage FPGA-based systems, where the decision and the

its translation to actions are conducted by an incorporation of the Decide and Act steps.

Bolchini et al. [21] have used ODA to realise the adaptation for self-adaptive systems

because of its simplicity. It observes high-level and raw data from the Observe step, such

data is then used by Decide to know which parts of the system to reason on, and finally,

actions are taken depends on the characteristic of the system being managed. Huber et

al. [75] also use ODA for self-aware autoscaling resources in the cloud. However, unlike
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traditional ODA loop, it has an additional Analysis step which is used to detect the type

of problems that trigger adaptation.

Overall, although the knowledge that a system requirs is sometime discussed in the

Decide step (e.g., [75]) in ODA, it cannot capture different levels of knowledge in a fine-

grained representation as required by the system. This is because ODA is mainly designed

for decoupling loops for different human activities, which allows application and systems

programmers to separately specify observations and actions, according to their expertise.

2.2.3 Monitor-Analyze-Plan-Execute

Another pattern extended from the feedback loop control, namely Monitor-Analyze-Plan-

Execute (MAPE), is firstly proposed by IBM for architecting self-adaptive systems. In

such pattern, the Decide step in OAD is further divided into two substeps, these are

Analyze and Plan, where the former is particularly designed to determine the causes

for adaptations, e.g., SLA violation; the latter, on the other hand, is responsible for

reasoning about the possible actions for adaptation. MAPE sometime can be extended by

a Knowledge component (a.k.a. MAPE-K) which maintains historical data and knowledge

used by the system for better adaptation.

MAPE (or MAPE-K) is widely applied for autoscaling in the cloud [94], [30], [23],

[101], [28], [91]. For example, the architecture of the FoSII ptoject [23] [101] leverages

MAPE-K to realise the self- management interface, which is necessary to devise actions

in order to prevent SLA violations in cloud. They also use the additional Knowledge

(K) component to record cases and the related solutions, which can assist the autoscaling

decision making. QoSMOS [28] is designed for service-based systems rather than for cloud

specific autoscaling, however, it contains many aspects similar to that of autoscaling in the

cloud. To achieve continuous adaptation, it applies MAPE with the focuses on analytical

QoS modelling and optimisation of resource allocation. APPLEware [91] is an autoscaling
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framework which leverages MAPE. In their architecture, the Analyze component model

the QoS while the Plan component conducts optimisation process for autoscaling.

Realising multiple MAPE loops is also possible. Zhang et al. [139] introduce an

architecture for autoscaling using two nested MAPE loops. The first loop is responsible

for adapting the software primitives while the other loop is used to change the hardware

primitives. These two loops run sequentially upon autoscaling, that is, adapting the

software primitives before changing the hardware primitives. Similarly, BRGA [7] utilises

MAPE to realise a framework for autoscaling in the cloud. Such solution consists of both

the local and global view of the cloud-based application. In particular, the Monitor and

Execution phase maintain the global view whereas the Analyze and Plan phase manage

the local view on each PM. The authors claim that such an approach can achieve good

global quality with reasonable management overhead.

In conclusion, MAPE can be good for separation of concepts (e.g., Analyze and Plan)

and for expressing the sequential interactions between those concepts. However, although

the Knowledge component can be considered, there is still no fine-grained representation

of the required knowledge for the system. Thus, it is not immediately intuitive that what

level of the knowledge is required by each logical aspect of the autoscaling system.

2.3 QoS Modelling

QoS modelling, or performance modelling, is a fundamental research theme in cloud com-

puting and it can serve as useful foundations for addressing many research problems in the

cloud [98], including autoscaling. The QoS models correlate the QoS attributes to various

control primitives and environmental primitives. Clearly, these models are particularly

important in cloud autoscaling, as they are a powerful tool that can assist the reasoning

about the effects of adaptation on objectives in the autoscaling decision making process.

Typically, QoS modelling consists of two phases, namely primitives selection and QoS
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Figure 2.3: The Taxonomy of QoS Modelling in Cloud.

function training. More precisely, the primitives selection phase determines which and

when the primitives correlate with the QoS; while QoS function training phase identify

how these primitives correlate with the QoS, i.e., their magnitudes in the correlation. The

QoS models can be either static or dynamic, where the former refers to the models’ ex-

pression and their structure (e.g., the number of inputs and their weights) do not change

over time; while the latter permits such changes. Those models can be also applied as

online at system runtime, or offline at design phase of the system. In the following, we

survey the key work on QoS modelling in the cloud and classify them in terms of the

algorithms they apply. The taxonomy has been illustrated in Figure 2.3.
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2.3.1 Analytical Modelling

Analytical modelling approaches rely on mathematical models that have a closed-form

solution to model the cloud-based service. These models are often built offline based on

theoretical principles and assumptions. Next, we further divide the analytical modelling

approach into queuing theory, dependability models and black box models.

Queuing theory

Queuing model and queuing network are widely applied for QoS modelling in the

cloud. They model the cloud-based services as a single queue or a collection of queues

interacting through request arrivals and departures. Specifically, a single queue has been

used to model the correlation of response time (or throughput) to CPU, number of VM

and workload. For example, depending on the assumption of the distribution on arrival

and service rate, the model can be built as M/G/c queue by Zhang et al. [138], M/G/m

queue by Jiang et al. [77] , M/M/1 queue by E3-R [124] and JustSAT [125], and M/M/m

queue by Jiang et al. [78]. To create more detailed modelling with respect to the internal

structure of cloud-based services, multiple queues can be used to create QoS models:

Goudarzi and Pedram [69] apply multiple queues to model the response time for cloud-

based multi-tiered applications with respect to number of VM and workload. Their work

calculates average response time for the queue in the forward direction throughout the

tiers. In a similar way, Bi et al. [19] use a queuing network composed of an M/M/c

queue and multiple M/M/1 queues to estimate the correlation between response time and

number of VMs and workload for cloud-based application. Li et al. [93] apply a single

queue to model the correlation between response time and CPU, workload and thread. In

particular, the model contains finite capacity regions, which denote the place constraints

on the maximum number of jobs circulating in a subnetwork of queues. This is because

they are the simplest class of models that offer the features to describe performance
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scalability as a function of the software threading level and for the number of CPUs.

Unlike classical queuing model and queuing network, the Layer Queuing Network

(LQN) additionally model the dependencies arising in a complex workflow of requests to

cloud-based services and applications. Chi et al. [41] use LQN (i.e., based on M/M/n

queue) to model the QoS of application, which is response time with respect to CPU and

workload. CloudOpt [95] relied on LQN as the aggregate QoS model for all the services

contained by an application. It models only response time with respect to CPU and

workload. Li et al. [94] use LQN for model services in an application. Again, it only

captures response time with respect to CPU and workload. Zhu et al. [142] have also used

LQN where the authors employ a global M/M/c queue for the entire on-demand dispatcher

and then a M/G/1 queue on each tier of an application. The former queue correlates the

response time to number of VMs while the latter queue models the relationship between

response time and CPU of the VM that contains the corresponding tier.

Dependability models

Dependability models are another widely used technique for QoS modelling in the

cloud. This approach focuses on the modelling of stable states for QoS attributes. For

example, Copil et al. [46] uses a graph representation to model the dependency between

per-service QoS and the necessary primitives. Although the graph can be updated at

runtime, the model is essentially analytical. In QoSMOS [28], the authors analytically

solve the Markov Models (Discrete-Time Markov Chain and Markov Decision Process)

to model the QoS for services in an application. The model correlates QoS attributes

with hardware resources and workload. Huber et al. [75] uses Palladio Component Model

(PCM) as architecture-level QoS model since it allows to explicitly model different usage

profiles and resource allocations. Kateb et al. [51] uses model@runtime to correlate QoS

attributes with the number of VM. The modelling approach is essentially based on a

domain specific language, which does not only able to reason about the system at design
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time, but is also able to assist decision making during runtime.

Black box models

Black-box models are also popular, in which the QoS is modelled based on empirical

knowledge or statistical data of history [52], [23], [106], [54], [53], [8], [81],[7]. Among

others, CLOUDFARM [106] uses a empirical QoS model where the correlation between

certain QoS values and the required resource is captured (i.e., CPU). In particular, the

authors assumed that the magnitudes of resources to the QoS values is known, as specified

by the cloud service or application provider. The FoSII project [23] has also applied

empirical QoS models such that the correlation between hardware resource (i.e., CPU,

memory and bandwidth) and QoS is hard-coded using cases, each of which contains a

set of particular values of resource and their resulted utility value. Another work from

Emeakaroha et al. [54] propose an empirical model that maps the expected QoS values

with CPU, memory, bandwidth and storage. The model relies heavily on the assumption

of the system that being managed. Their extended work [53] is also based on a similar

approach, where the authors correlate the QoS attributes to different CPU, memory,

bandwidth and storage using manual and empirical mapping. The proposed mapping can

be as simple as one QoS attribute to one primitives, or a complex form where multiple

cloud primitives are associated with a QoS attribute.

Overall, analytical modelling has the advantage of simplicity and interoperability. In

particular, such modelling is usually highly intuitive and has negligible overhead when

applied for autoscaling in the cloud. However, analytical approaches often require in-depth

knowledge about the likely behaviours of the system being modelled. Consequently, their

effectiveness is restricted to the assumptions of service’s internal operations; such static

nature makes these approaches limited in coping with the dynamic and uncertainty at

runtime. Finally, both primitives selection and QoS function training phases in analytical

approaches are often static and offline. However, for some of the approaches (e.g., [28],
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[51]), their QoS function training phase can be achieved in a dynamic and online manner.

2.3.2 Simulation Based Modelling

Various simulators exist for creating QoS models; here, conducting simulations is usually

a complex and expensive process and thus they are used in an offline manner. In practice,

simulation is required to be setup by the domain experts, who will often need to analyse,

interpret and profile the data collected after simulation runs. Specifically, Fernandez et

al [55] have relied on a profiling approach that builds the QoS model for each bundle of

VM offline. The process is similar to a simulation modelling approach. CDOSim [57]

is a framework that simulates the actual application in the cloud to restrict the search-

space for autoscaling and to steer the exploration towards promising decisions. CloudSim

[27] is a simulation toolkit that models QoS attributes (of VM) with respect to resource

allocation. It supports both single cloud and multiple clouds scenarios. As an extension of

CloudSim, CloudAnalysis [128] allows the simulation of QoS attributes for the application

deployed on geographically-distributed datacenters. Similarly, DCSim [83] simulates the

overall quality of resource autoscaling for the entire cloud.

Overall, simulation can produce good QoS models providing that the scenarios which

have been simulated are similar to those that would occur at runtime. However, similar

to the analytical approaches, simulation based modelling is also static and restricted by

the assumptions made in the simulators, e.g., distribution of workload and the effects of

QoS interference. In addition, it can be expensive to use as it often requires heavy human

intervention. Commonly, simulation based modelling approach is an offline process, in

particular, the QoS function training phases can be dynamic; while the primitives selection

phase is static.
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2.3.3 Machine Learning Based Modelling

The increasing complexity of managing services in the cloud makes the modelling diffi-

culty far beyond the capability of human analysis. To this end, recent works have been

leveraging the advances of machine learning algorithms. In the following, we survey the

key work that applies machine learning approaches for QoS modelling in the cloud. In

particular, we have classified them into two categories, these are: linear and nonlinear

modelling.

Linear modelling

Learning algorithms based on linear models for QoS modelling in the cloud can handle

linear correlation between a selected set of inputs (e.g, CPU, memory, number of VM,

workload etc) and output (i.e., QoS attributes), and they are sometime very efficient. Diao

et al. [48] propose a very early work on QoS modelling using Auto-Regressive and Moving-

Average (ARMA) and Multi-Inputs-Multi-Output (MIMO) model on-the-fly. Their work

is not cloud specific but it provides insight for many subsequent work on cloud based

QoS modelling. Simple linear models most commonly rely on linear regression, where

each primitive input is associated with a time-varying weight, e.g., Lim et al. [96], Zhang

et al. [139] and Collazo-Mojica et al. [45]. More advanced forms exist, e.g., Padala

et al. [107] have used ARMA trained by Recursive Least Squares (RLS). The authors

claim that the linear AMRA model is easy to be estimated online and can simplify the

corresponding controller design problem. The authors found that the second-order ARMA

model can predict the application performance with adequate accuracy. Kalivianaki et

al. [82] uses Kalman filter to update the QoS model. The authors claim that the Kalman

filter is optimal in the sum squared error sense under the assumptions that the system

is described by a linear model, and the process and measurement noise are white and

Gaussian.
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Linear machine learning algorithms are also commonly used with analytical approaches

to form QoS models. Specifically, Grandhi et al. [63] and Zheng et al. [140] have proposed

hybrid model: to model the multi-tiered application, they have relied on a modified LQN

where there are some time-varying coefficients. The authors then employ the Kalman filter

as an online parameter estimator to continually estimate those coefficients. Ghanbari et

al. [65] have also followed a similar approach, but through the use of k-mean clustering,

they additionally cluster the model into multiple sub-models based on different types

of workload. The approach proposed by Xiong et al. [134] has relied on a combined

model, where a M/G/1 queue is used to model the correlation between response time and

workload; while ARMA is used to model the relationship of response time and CPU.

There is limited work that attempts to capture the information of QoS interference in

the linear QoS model and they only focus on the VM-level [91], [116], [127], [99]. As an

example, Q-Cloud [116] has explicitly considered QoS interference by using the hardware

control primitives of all co-hosted VMs as inputs, rendering it in a MIMO manner. The

model itself is a simple linear model and it can be easily trained by using Least Mean

Square (LMS).

Nonlinear modelling

Learning algorithms based on nonlinear models for QoS modelling in the cloud is able

to capture complex and nonlinear correlation, in addition to the linear one. However,

it can also produce relatively large overhead than the linear modelling. Here, existing

work often aim to model the correlation between hardware control primitives (e.g., CPU,

memory and bandwidth) and QoS. The nonlinear modelling can be relied on kriging model

[62], Regression Tree (RT)[132], Artificial Neural Network (ANN) [90] [105] [87] , Support

Vector Machine (SVM) [43] [90] and change-point detection [20]. For example, Gambi

et al. [62] utilise kriging model, which is a spatial data interpolator akin to nonlinear

and radial basis functions, and it extends traditional regression with stochastic Gaussian
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processes. SmartSLA [132] employs Regression Tree (RT) and boosting to model the QoS.

RT partitions the parameter space in a top-down fashion, and organises the regions into

a tree style. The tree is then trained by M5P where the leaves are regression models.

The work from Kunda et al. [90] presents sub-modelling based on ANN and SVM for

correlating QoS with hardware control primitives in the cloud. Instead of building a

single model for a QoS attribute, they train n sub-models, whereby n is determined by

performing k-mean clustering based on the similarity between data values of QoS. This

is because they observe that large errors were mostly concentrated in a few sub-regions

of the output value space, indicating a single model’s inability to accurately characterise

changes in application behaviour as it moves across critical resource allocation boundaries.

The authors claim that the approach can be applied online.

Examples exist for cases where multiple linear and/or nonlinear machine learning

algorithms are used together. Zhu and Agrawal [141] use a variant of ARMA and SVM

to model the correlation of QoS attributes to software and hardware control primitives.

In particular, the ARMA variant, which is trained by SVM, is used to link QoS and

software control primitives. Subsequently, another dedicated SVM is used to model the

relationship between software control primitives and hardware control primitives (i.e.,

CPU and memory in the work). Another work from Kousiouris et al. [88] correlates QoS

attributes with various primitives using ANN. Additionally, it applies a time-series ANN

to predict the workload in conjunction with the QoS models. This aims to provide more

accurate information when making prediction online.

Dynamic primitives selection

All the aforementioned work regards the primitives selection as a manual and offline

process, most commonly, they have relied on empirical knowledge and heavy human

analysis to select the important primitives as the inputs of QoS models. Although not

many, there is some work that explicitly considers dynamic process in primitives selection,
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which tends to be more accurate and can be easily applied [85], [86], [133]. As an example,

vPerfGuard [133] is a framework that correlates QoS attributes with respect to software

control primitives, hardware control primitives and environmental primitives. The authors

achieve primitive selection based on both filter (relevance based correlation coefficient)

and wrapper (i.e., hill-climbing comparison based on algorithms like k-nearest-neighbour

and linear regression etc). Linear regression is used as default to train QoS based on the

selected primitives.

Comparison of different learning algorithms

Given the various types of machine learning algorithms, it can be difficult to determine

which one(s) are the appropriate algorithms for QoS modelling in the cloud, with respect

to both accuracy and overhead. There are researches that have conducted detailed com-

parisons of different possible learning algorithms for QoS modelling in the cloud [103] [97]

[42], for example, Lloyd et al. [97] conduct an extensive experiment over various machine

learning algorithms (i.e., MLR, MRS and ANN) in cloud. They select the primitives based

on manual analysis. The results show that the relevant and useful primitives could be

different depending on the characteristics of services and application; and that different

machine learning algorithms achieve a variety of accuracy depending on the scenarios.

Overall, machine learning based modelling approaches have the advantage of requiring

limited human intervention, and care able to continually evolve themselves at runtime in

order to cope with dynamics and uncertainty. Nevertheless, depending on the learning

algorithm, the resulting overhead can be high (e.g., the nonlinear ones) and the accuracy

is sensitive to the given scenarios (e.g., fluctuation of the data trend). Generally, the

machine learning approaches can be applied as offline, online or a mixture of the both.

According to the existing work surveyed for QoS modelling in the cloud, we discover that

the QoS function training phase is often dynamic; while there is very little work that

intends to consider primitives selection phases as a dynamic process (online or offline),
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and the others have relied on offline and manual analysis. Therefore, we can conclude

that majority of the approaches that apply machine learning for QoS modelling are semi-

dynamic. In addition, we have also found that only a small amount of existing work

intends to consider QoS interference in the modelling; and they only focus on VM-level

interference.

2.3.4 Comparison of QoS Modelling to Workload and Demand

Modelling

Despite the fact that QoS modelling is fundamentally helpful for cloud autoscaling, it

can be difficult to achieve given the heterogeneity of possible primitives and the multi-

dimensional input space of QoS modelling. Therefore, some existing work on autoscaling

(e.g., [121] , [120], [87]) have considered simpler alternatives, i.e., model the workload

and demand for assisting autoscaling decision making. In those cases, the modelling is

reduced to a single dimension, where the core is to model the trend of the workload or

demand using its historical data. The models would be used to predict the likely value

at the next interval. However, the single dimension in workload or demand models do

not offer the ability to reason about the effects of autoscaling decisions and the possible

trade-offs. It is important to note that trade-off decisions making is a critical logical

aspect for autoscaling, and it is also one of the cores of this thesis. Therefore, this thesis

has explicitly focused on QoS modelling.

2.4 Granularity of Control

The ultimate goal of autoscaling is to optimise the QoS and cost objectives, which are

referred to as benefit, for all cloud-based services. To this end, the granularity of control

in autoscaling plays an integral role, since it determines which and how many objectives

should be considered in a decision making process of autoscaling. In the following, we
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Figure 2.4: The Taxonomy of Granularity of Control for Autoscaling in Cloud.

classify existing cloud autoscaling approaches into different categories depending on what

level of granularity they tend to operate at. The taxonomy has been illustrated in Figure

2.4.

2.4.1 Controlling at Service Level

Service level is the finest level of control in the cloud. It is worth noting that by service, we

refer to any conceptual part of the system being managed. As a result, control granularity

at the service level may refer to independently controlling/scaling an application, a tier

of an application or a cloud-based service.

Specifically, most work has focused on controlling each cloud-based application. These

approaches have relied on controlling the QoS and/or cost for each individual application

in isolation, and therefore, they regard an application as a service. Examples of such
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include: [121], [125], [55], [45], [141], [93], [77], [30], [68] and [85]. To describe some of

them in detail, Lim et al. [96] control the application and its required VM, in which

case an application is regarded as a service. Sedaghat et al. [120] regard application as a

service, and considered the required number of VMs and the fixed VM bundles for such

service. Jiang et al. [78] control each application, each of which is, again, regarded as a

service and therefore it is essentially service-level control. In addition, the authors group

VMs into different fixed bundles.

There is also existing work that controls cloud-based service in general, which can be

regarded as any conceptual part of a cloud-based system. Copli et al. [46] control the QoS,

cost and their elasticity for each service deployed in the cloud. Yang et al. [136] control the

cost of individual cloud-based services. The FoSII project [23] controls individual cloud-

based service, their QoS and cost. [62] control at the service level, where the controller

decides on the optimal autoscaling decision for cloud-based service in isolation. QoSMOS

[28] explicitly focuses on each individual service, and adapting it in isolation. Kateb et

al. [51] consider many services are encapsulated in the application, and the authors focus

on each service in isolation. The E3-R framework [124] and Frey et al. [59] control each

service, including their composition and autoscaling.

2.4.2 Controlling at Virtual Machine Level

VM level means that the control and decision making operate at each VM. In particular,

certain work assumes a one-to-one mapping between application (or a tier) and VM

and thus they can be categorised as either service level or VM level granularity. To

better separate them from the pure service level granularity of control, these work are

regarded as VM level granularity. Specifically, FC2Q [12] regards application tier and VM

interchangeably, therefore controlling each tier of an application is equivalent to control

each individual VM. Similarly, Kalyvianaki et al. [82] control a tier of an application that
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resides on a VM, and the authors only focus on CPU allocation of a VM. Wang, Xu and

Zhao [126] control the cloud in a per-VM basis, and each VM is adapted in isolation.

VScale [137] focuses on vertical scaling only and hence the control granularity is per VM.

Zhang et al. [139] assume only one application per VM, and control the deployed VM

in isolation correspondingly. Guo et al. [70] control the application deployed on the VM

and the authors assume one application per VM. Similarly, Matrix [43] has used VM level

control as there is only one application per VM.

2.4.3 Controlling at Physical Machine Level

Autoscaling decision making on each PM independently is referred to as PM level control.

The primary intention of PM level control is to manage the QoS interference caused by

co-hosted VMs. Among the others, Xu et al. [113] control the VMs collectively at the

PM level, in this way, it tries to promote better management of QoS interference. The

extended work from Xu et al. [135] consider QoS interference at the VM level, therefore

the granularity of control is based on each PM. Similarly, Bu et al. [26] considers VM

level QoS interference and thus the control is for each PM. Minarolli and Freisleben

[105] consider all the co-hosted VM in conjunction with each others and thus its control

granularity is at the PM level. Lama et al. [91] control at the PM level in order to handle

QoS interference.

2.4.4 Controlling at Cloud Level

The most coarse level of control granularity is at the cloud level. The majority of the work

achieves autoscaling at the cloud level by using a centralised and global controller, with

an aim to manage utility ([41], [15], [60], [8], [106]), profits ([94], [142]) and availability

([52]). Among others, Ferretti et al. [56] control the QoS for all cloud-based services in a

global manner. However, the actual deployment can be either centralised or decentralised.

Similarly, CRAMP [16] uses a centralized and global controller, it controls the entire cloud
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for cost and QoS. CloudOpt [95] also controls the entire cloud using centralised control, as

the considered optimisation involves all the PM in the cloud. Zhang et al. [138] control

the cost of the entire cloud with respect to how the VM instances of Amazon can be

utilised. BRGA [7] maintains global view of the entire cloud, and thus it belongs to

cloud level control. The FOSII project [102] also controls the entire cloud in a centralised

manner, where the goal is to manage the entire cloud at infrastructure level.

Some of the developments have relied on a decentralised manner where a consensus

protocol is employed for controlling at the cloud granularity. For example, Wuhib et al.

[131] aim to control the entire cloud, and thus the QoS and the overall power consumption

of cloud can be collectively managed. In the mean time, they have relied on decentralised

deployment, which can reduce the overhead of cloud-level control.

2.4.5 Controlling at Multiple Levels

Some work operates at multiple levels, with an aim to better manage the overhead and

global benefit. For example, Minarolli and Freisleben [104] combine both PM level and

cloud level control, where the PM level is decentralised and the objective is to optimise

the utility locally. Similarly, SmartSLA [132] aims to control the resource allocation for

all the cloud-based services, therefore it utilises a global, cloud-level control in addition

to the decentralised local control on each VM.

In summary, the finer granularity of control implies that it is harder to achieve globally-

optimal benefit but likely to generate smaller overhead. On the other hand, globally-

optimal benefit can be easier reached with large overhead if the granularity of control

is coarser. All of the approaches surveyed operate at static and fixed granularity of

control, even for the hybrid ones. As a result, given the time-varying QoS sensitivity and

interference in cloud, they can be inflexible for any runtime changes about the effects of

control granularity to the global benefit.
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Figure 2.5: The Taxonomy of Trade-off Decision Making for Autoscaling in Cloud.

2.5 Trade-off Decision Making

The final important logical aspect in cloud autoscaling is the challenging decision making

process, with the goal to optimise QoS and cost objectives. It is even harder to handle

the trade-off between possibly conflicting objectives. Such decision making process is

essentially a combinatorial optimisation problem where the output is the optimal decision

containing the newly configured values for all related control primitives. In the following,

we survey the key work on the decision making for cloud autoscaling. In particular,

we classify them into three categories, these are Rule Based Control, Control Theoretic

Approach and Search Based Optimisation. The taxonomy has been illustrated in Figure

2.5.
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2.5.1 Rule Based Control

Rule-based control is the most classic approaches for making decision in cloud autoscaling.

Commonly, one or more conditions are manually specified and mapped to a decision, e.g.,

increase CPU and memory by x if the throughput is lower than y. Therefore, the possible

trade-off is often implicitly handled by the conditions and actions mapping. Specifically,

Cloudline [60] allows programmable elasticity rules to drive autoscaling decisions. It is

also possible to modify these rules at runtime as required by the users. Copil et al. [46]

handle the decision making process by specifying different condition-and-actions mapping

for autoscaling in the cloud. In addition, the rules can be defined at different levels,

e.g., PaaS and IaaS. Similarly, Ferretti et al. [56] allow to setup mapping between QoS

expectation and actions using XML like notations. The autoscaling decision making in

the work from Emeakaroha et al. [52] is also based on predefined rules, in addition, a

simple heuristic algorithm is used to search for the best available VMs. Rule based control

for autoscaling decision making can be also found in other work, e.g., Wuhib et al. [131],

Manuer et al. [102], Han et al. [71] and Chazalet et al. [30].

Overall, we discovered that all the rule based autoscaling decision making approaches

have considered both vertical and horizontal scaling as the final actuations in the cloud.

Generally, rule based control is a highly intuitive approach for autoscaling decision making,

and it also has negligible overhead. However, the static nature of the rules requires to

assume all the possible conditions and the effects of those decisions that are mapped to the

conditions. In addition, the fact that they heavily rely on human intervention and analysis

can quickly become an issue. Consequently, they tend to be limited in dealing with the

dynamics and uncertainties in cloud, especially when there are complex trade-offs.
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2.5.2 Control Theoretic Approach

Advanced control theory is another widely investigated approach for autoscaling decision

making in cloud because of its low latency and dynamic nature. However, it is difficult

to explicitly reason about the effects of possible trade-off decisions in a control theoretic

approach.

Among the others, classical controllers (e.g., Proportional-Derivative control [15] [96]

[16], Kalman control [82] [63] and Fuzzy control [12] [10] [126] ) are commonly designed as

a sole approach to make autoscaling decisions in the cloud. Specifically, ARUVE [15] and

CRAMP [16] utilises a Proportional-Derivative (PD) controller, where the proportional

and derivative factors do not depend on a QoS model of the application or the infrastruc-

ture dynamics, and support proactive resource allocation for the application server tier

with dynamic scaling of web applications in a shared hosting environment. Anglano et al.

[12] and Albano et al. [10] apply fuzzy control that is updated by fuzzy rules at runtime.

The aim is to optimise both QoS, cost and energy by autoscaling hardware resources. Al-

though the authors claim they can cope with any hardware resources, the approach only

focus on CPU allocation. They have also assumed that QoS interference rarely occurs.

Kalyvianaki et al. [82] and Grandhi et al. [63] use MIMO model and Kalman controller

for making autoscaling decisions, and the authors aim at response time by autoscaling

CPU on a VM.

Control theoretic approaches can be sometime used with other algorithms to better

facilitate the autoscaling decision making [134], [104], [70], [114], [141], [91]. Particularly,

the gains in the controllers can be further tuned by optimisation and/or machine learn-

ing algorithms, and this is especially useful for Model Predictive Control (MPC). Among

others, Zhu and Agrawal [141] utilise a Proportional-Integral-Derivative (PID) and rein-

forcement learning controller for decision making with respect to adapting software control

primitives. Such result is then tuned in conjunction with the hardware control primitives
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using exhaustive search. The QoS attributes and cost are formulated as weighted-sum re-

lation. The autoscaling decision making process in APPLEware [91] have relied on MPC,

which involves optimising a cost function that expresses the local control objectives and

resource constraints over a time interval. The current state of the local application and

the control decisions made by neighbouring controllers of a VM are taken into account to

perform the optimisation using quadratic programming solver.

In summary, we discovery that the majority of the control theoretic work have con-

sidered both vertical and horizontal scaling as the final actuations in the cloud. Overall,

the control theoretic approaches are efficient for making autoscaling decisions. However,

the major drawback of control theoretic approaches is that they require to make many

actuations on the physical system, in order to collect the ’errors’ for stabilising itself. This

means that amateur decisions are very likely to be made. In addition, the trade-offs are

only implicitly handled.

2.5.3 Search Based Optimisation

A large amount of existing work relies on search-based optimisation, in which the deci-

sions and trade-offs are extensively reasoned in a finite, but possibly large search space.

Depending on the algorithms, search-based optimisation for autoscaling decision making

in the cloud can be either explicit or implicit—the former performs optimisation as guided

by explicit system models; while this process is not required for the later.

Implicit search

As mentioned, the implicit and search-based optimisation approaches for autoscaling

decision making do not use QoS models. Similar to the control theoretic approaches, the

implicit search is also limited in reasoning about the possible trade-offs. For example, the

work from Xu et al. [113] , [135] applies a model-free Reinforcement Learning (RL) ap-

proach for adapting thread, CPU and memory for QoS and cost. The approach is however
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implicit, providing that there is neither explicit system models nor explicit optimisation.

The authors have considered QoS interference during autoscaling. Similarly, VScale [137]

utilises RL for making autoscaling decisions, which are then achieved by vertical scaling.

The RL is realised by using parallel learning, that is to say, the authors intend to speed

up agent’s learning process of approximated model by learning in parallel. Therefore, the

agent does not have to visit every state-action pair in a given environment.

The approaches that rely on demand prediction (e.g., the Autoflex [11], PRESS [68],

[120], [29], [44] and [79]) are also regarded as implicit search. This is because the au-

toscaling decision is essentially predicted by the demand models, without the needs of

reasoning or optimisation process.

Explicit search

In search-based optimisation category, the explicit approaches for autoscaling decision

making rely on the explicit QoS models to evaluate and guide the search process. De-

pending on the different formulations of the decision making problem for autoscaling in

the cloud, explicit search can reason about the effects of decisions and the possible trade-

offs in details. In this thesis, we have surveyed the approaches that rely on three the

most commonly used formulations, these are single objective optimisation, weighted-sum

optimisation, and Pareto optimisation.

It is common to optimise only a single objective (e.g., cost or profit) for autoscaling

in the cloud, providing that the requirements of the other objectives are satisfied (i.e.,

they are often regarded as constraints) [136], [138], [85], [125], [45], [75], [121], [120], [95],

[17], [43], [99]. For example, Kingfisher [121] and Sedaghat et al. [120] use Integer Linear

Programming (ILP) to optimise the cost for scaling the CPU and memory for VMs of an

application while regarding the demand for satisfying QoS as constraint. Sedaghat et al.

[120] has additionally assumed fixed VM bundles. Similarly, CloudOpt [95] models the

decision making for autoscaling using a weighted-sum of different aspect of cost, which is
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still regarded as single objective optimisation, and the optimisation is then resolved by

mixed integer programming approach. A recent extension of ARUVE [17] formulates the

decision making in autoscaling as a single optimisation on cost, which is resolved by using

Ant Colony Optimisation (ACO).

To apply search based optimisation for autoscaling in the cloud, the most widely solu-

tion for handling the multi-objectivity is to aggregate all related objectives into a weighted

(usually weighted-sum) formulation, which converts the decision making process into a

single objective optimisation problem. The search based algorithm include: exhaustive

search [41] [28] [62] [78], auxiliary network flow model [94], force-directed search [69], bi-

nary search [81]. For example, the FoSII project [23] [101] regards the autoscaling decision

making as case based reasoning process, where the decision is made by looking for similar

cases from the past and reusing the solutions of these cases to solve the current one. The

case and solution pairs are linked to aggregative utility values based on the analytical

model, thus the reasoning process is essentially an optimisation for the optimal decision

using exhaustive search algorithm. Goudarzi and Pedram [69] use a weighted-sum for-

mulation containing QoS and cost for an application tier. The optimisation is resolved

using force-directed search, in which an initial solution based on the solution given for the

profit upper bound problem is generated. Next, distribution rates are fixed and resource

sharing is improved by a local optimisation step.

Some work has relied on more advanced and nonlinear search algorithms, ranging

from relatively simple ones: dynamic programming [106] and local-search strategy [8],

to more complex forms: grid search [132], decision tree search [55] [99] and quadratic

programming [107]. For example, CLOUDFARM [106] addresses the decision making

based on a weighted-sum utility function of all cloud-based application and services. The

decision making process is formulated as a knapsack problem, which can be resolved by

dynamic programming. In SmartSLA [132], the decision making for autoscaling is aimed
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for optimising SLA penalty, which is essentially based on the aggregation of expected QoS

values. The optimisation is resolved using a grid search algorithm. To optimise weighted-

sum utilisation, Amiya et al. [99] have explicitly aimed to mitigate QoS interference in the

cloud using heuristic based decision tree search, however, they only intend to autoscale

software control primitives.

Metaheuristic algorithms are also popular for autoscaling decision making in the cloud,

because they can often efficiently address NP-hard problems with approximated results.

The most common algorithms include: Tabu Search [142], Genetic Algorithm (GA) [139]

[105] [7] , Particle Swarm Optimisation (PSO) [139]. As an example, Zhu et al. [142]

formulate the autoscaling decision making as optimise a weighted-sum formulation of

response time and cost. To optimise the objectives, the authors apply a hybrid Tabu

Search, which, in every iteration, the current matrix is disturbed and a new decision is

generated as initial solution of gradient descent. After reaching a particular fixed point,

the variation of profit is calculated and the best configuration is returned.

Finally, Pareto relation can explicitly handle multi-objectivity for autoscaling in the

cloud without the need to specify weights on the objectives [51], [93], [124], [59]. For

example, Kateb et al. [51] formulate the decision making process as Pareto-based multi-

objective optimisation, which is solved by Multi-objective Genetic Algorithm (MOGA,

e.g., NSGA-II). At each generation, MOGA identifies non-dominating solutions. Crowd-

ing distance is used to calculate the distance between an individual and its neighbours.

In particular, each generation of the search is evaluated using epsilon dominance which is

a relaxed form of the commonly used Pareto-dominance metric. In E3-R [124], the deci-

sion making problem is formulated as Pareto front, where it is resolved by using MOGA.

In addition, the approach applies objective reduction technique with an aim to remove

the objectives, which are not significantly conflicted with the others, from the decision

making process. In this way, the author aims to reduce the overhead while not affecting
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the quality of decisions.

In conclusion, we discover that around two thirds of the surveyed search based ap-

proaches have considered both vertical and horizontal scaling as the final actions in the

cloud. Overall, the nature of search-based optimisation permits certain level of reasoning

during the decision making, and this presumably provides better assurance on the quality

of the decisions before conducting the actual scaling actions. As we can see, there are

small amount of the approaches surveyed belong to implicit search, which can be efficient

as there is no need for QoS modelling. Nevertheless, the absence of QoS models also

mean that they cannot explicitly handle the trade-offs. On the other hand, the other

approaches make use of the explicit search, however, majority of those work formulate

the problem as single objective or rely on weighted-sum of objectives, and hence their

search of possible trade-offs decision tend to be limited in terms of both optimality and

diversity. A limited amount of effort has considered Pareto relation, however, none of

them have considered well-compromised trade-off, i.e., the decisions that have balanced

improvements on the related objectives. Finally, QoS interference is often ignored in au-

toscaling decision making, even if it is considered, there is no explicit solution for handling

the related trade-offs.
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e
s

n
o

re
sp

o
n
se

ti
m

e
n
o

m
a
n
u
a
l

L
Q

N
c
lo

u
d

le
v
e
l

m
ix

e
d

in
te

g
e
r

p
ro

-
g
ra

m
-

m
in

g

n
o

[1
2
6
]

im
p
li
c
it

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

n
o

th
re

a
d
,

C
P

U
a
n
d

m
e
m

o
ry

n
o

n
o

n
/
a

n
/
a

n
/
a

n
/
a

V
M

le
v
e
l

fu
z
z
y

c
o
n
tr

o
l

n
o

[1
2
0
]

n
o

a
p
p
li
c
a
ti

o
n

c
o
st

n
o

C
P

U
,

m
e
m

o
ry

a
n
d

n
u
m

b
e
r

o
f

V
M

y
e
s

n
o

d
e
m

a
n
d

n
o

n
/
a

n
/
a

se
rv

ic
e

le
v
e
l

IL
P

n
o

[5
4
]

n
o

a
p
p
li
c
a
ti

o
n

n
/
a

n
/
a

C
P

U
,

b
a
n
d
-

w
id

th
a
n
d

st
o
ra

g
e

n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
n
o

m
a
n
u
a
l

m
a
n
u
a
l

n
/
a

n
/
a

n
o

[6
2
]

im
p
li
c
it

se
rv

ic
e

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

C
P

U
a
n
d

m
e
m

o
ry

n
o

n
o

w
o
rk

lo
a
d

a
n
d

Q
o
S

a
t-

tr
ib

u
te

s

y
e
s

m
a
n
u
a
l

k
ri

g
in

g
m

o
d
e
l

se
rv

ic
e

le
v
e
l

e
x
h
a
u
st

iv
e

n
o

[9
4
]

im
p
li
c
it

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

w
o
rk

lo
a
d

a
n
d

C
P

U
n
o

n
o

re
sp

o
n
se

ti
m

e
n
o

m
a
n
u
a
l

L
Q

N
c
lo

u
d

le
v
e
l

F
N

M
n
o

[1
3
5
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

n
o

C
P

U
,

th
re

a
d

a
n
d

m
e
m

o
ry

n
o

y
e
s

n
/
a

n
/
a

n
/
a

n
/
a

P
M

le
v
e
l

R
L

n
o

[1
0
4
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

C
P

U
a
n
d

m
e
m

o
ry

n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

A
R

M
A

P
M

le
v
e
l

a
n
d

c
lo

u
d

le
v
e
l

q
u
a
d
ra

ti
c

a
n
d

fu
z
z
y

c
o
n
ro

l,
h
il
l

c
li
m

b
in

g

n
o

[1
3
8
]

n
o

a
p
p
li
c
a
ti

o
n

c
o
st

n
o

V
M

ty
p

e
y
e
s

n
o

re
sp

o
n
se

ti
m

e
n
o

m
a
n
u
a
l

q
u
e
u
in

g
a
n
a
ly

si
s

c
lo

u
d

le
v
e
l

d
y
n
a
m

ic
p
ro

-
g
ra

m
-

m
in

g

n
o

[6
9
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

n
u
m

b
e
r

o
f

V
M

n
o

n
o

re
sp

o
n
se

ti
m

e
n
o

m
a
n
u
a
l

q
u
e
u
in

g
a
n
a
ly

si
s

se
rv

ic
e

le
v
e
l

fo
rc

e
-

d
ir

e
c
te

d
se

a
rc

h
n
o

[1
3
7
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

n
o

C
P

U
a
n
d

m
e
m

o
ry

n
o

n
o

w
o
rk

lo
a
d

n
/
a

n
/
a

n
/
a

V
M

le
v
e
l

R
L

n
o
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[8
5
]

im
p
li
c
it

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

n
o

so
ft

w
a
re

c
o
n
fi

g
u
-

ra
ti

o
n

a
n
d

h
a
rd

-
w

a
re

re
-

so
u
rc

e
s

y
e
s

n
o

Q
o
S

a
t-

tr
ib

u
te

s
n
o

P
C

A
n
/
a

se
rv

ic
e

le
v
e
l

e
x
h
a
u
st

iv
e

n
o

[8
]

im
p
li
c
it

a
p
p
li
c
a
ti

o
n

re
sp

o
n
se

ti
m

e
,

c
o
st

a
n
d

a
v
a
il
-

a
b
il
it

y

w
e
ig

h
te

d
-

su
m

C
P

U
a
n
d

m
e
m

o
ry

n
o

n
o

w
o
rk

lo
a
d

a
n
d

re
sp

o
n
se

ti
m

e

n
o

m
a
n
u
a
l

m
a
n
u
a
l

c
lo

u
d

le
v
e
l

lo
c
a
l

se
a
rc

h
h
e
u
ri

st
ic

n
o

[1
9
]

n
o

a
p
p
li
c
a
ti

o
n

V
M

c
o
n
-

su
m

p
-

ti
o
n

n
o

w
o
rk

lo
a
d

a
n
d

n
u
m

b
e
r

o
f

V
M

y
e
s

n
o

re
sp

o
n
se

ti
m

e
n
o

m
a
n
u
a
l

q
u
e
u
e

a
n
a
ly

si
s

se
rv

ic
e

le
v
e
l

e
x
h
a
u
st

iv
e

n
o

[1
2
5
]

n
o

a
p
p
li
c
a
ti

o
n

V
M

c
o
n
-

su
m

p
-

ti
o
n

n
o

w
o
rk

lo
a
d

a
n
d

n
u
m

b
e
r

o
f

V
M

y
e
s

n
o

re
sp

o
n
se

ti
m

e
n
o

m
a
n
u
a
l

q
u
e
u
e

a
n
a
ly

si
s

se
rv

ic
e

le
v
e
l

e
x
h
a
u
st

iv
e

n
o

[7
1
]

n
o

a
p
p
li
c
a
ti

o
n

re
sp

o
n
se

ti
m

e
a
n
d

c
o
st

n
o

C
P

U
,

m
e
m

o
ry

a
n
d

b
a
n
d
-

w
id

th

n
o

n
o

n
/
a

n
/
a

n
/
a

n
/
a

se
rv

ic
e

le
v
e
l

ru
le

s
n
o

[1
4
2
]

n
o

a
p
p
li
c
a
ti

o
n

re
sp

o
n
se

ti
m

e
a
n
d

c
o
st

n
o

w
o
rk

lo
a
d

a
n
d

n
u
m

b
e
r

o
f

V
M

n
o

n
o

re
sp

o
n
se

ti
m

e
n
o

m
a
n
u
a
l

q
u
e
u
e

a
n
a
ly

si
s

c
lo

u
d

le
v
e
l

ta
b
u

se
a
rc

h
n
o

[7
8
]

im
p
li
c
it

a
p
p
li
c
a
ti

o
n

re
sp

o
n
se

ti
m

e
a
n
d

c
o
st

n
o

w
o
rk

lo
a
d

a
n
d

n
u
m

b
e
r

o
f

V
M

y
e
s

n
o

w
o
rk

lo
a
d

a
n
d

re
sp

o
n
se

ti
m

e

n
o

m
a
n
u
a
l

q
u
e
u
e

a
n
a
ly

si
s

se
rv

ic
e

le
v
e
l

ta
b
u

se
a
rc

h
n
o

[1
3
9
]

im
p
li
c
it

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
w

e
ig

h
te

d
-

su
m

so
ft

w
a
re

C
P

a
n
d

h
a
rd

-
w

a
re

C
P

n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

li
n
e
a
r

re
g
re

s-
si

o
n

V
M

le
v
e
l

m
e
ta

-
h
e
u
ri

st
ic

s
n
o

[2
8
]

im
p
li
c
it

se
rv

ic
e

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

n
o

h
a
rd

w
a
re

C
P

a
n
d

E
P

n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
n
o

m
a
n
u
a
l

D
T

M
C

a
n
d

M
D

P

se
rv

ic
e

le
v
e
l

e
x
h
a
u
st

iv
e

n
o

[1
2
7
]

n
o

a
p
p
li
c
a
ti

o
n

n
/
a

n
o

C
P

U
a
n
d

b
a
n
d
-

w
id

th

n
o

y
e
s

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

fu
z
z
y

ru
le

s
a
n
d

M
IM

O

n
/
a

n
/
a

n
o

[1
3
2
]

n
o

a
p
p
li
c
a
ti

o
n

S
L

A
p
a
n
e
lt

y
n
o

C
P

U
,

m
e
m

o
ry

,
w

o
rk

-
lo

a
d

a
n
d

n
u
m

b
e
r

o
f

V
M

n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

R
T

a
n
d

b
o
o
st

in
g

V
M

a
n
d

c
lo

u
d
-l

e
v
e
l

g
ri

d
se

a
rc

h
n
o

[2
6
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

n
o

C
P

U
,

th
re

a
d
,

se
ss

io
n
,

b
u
ff

e
r

a
n
d

m
e
m

o
ry

n
o

y
e
s

n
/
a

n
/
a

n
/
a

n
/
a

P
M

le
v
e
l

R
L

n
o

[7
0
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
n
o

so
ft

w
a
re

C
P

n
o

n
o

n
/
a

n
/
a

n
/
a

n
/
a

V
M

le
v
e
l

n
e
u
ra

l
fu

z
z
y

c
o
n
tr

o
l

n
o
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[4
3
]

im
p
li
c
it

a
p
p
li
c
a
ti

o
n

c
o
st

n
o

so
ft

w
a
re

C
P

n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

S
V

M
V

M
le

v
e
l

la
g
ra

n
g

a
lg

o
-

ri
th

m
n
o

[6
3
]

im
p
li
c
it

a
p
p
li
c
a
ti

o
n

re
sp

o
n
se

ti
m

e
a
n
d

c
o
st

n
o

C
P

U
,

m
e
m

o
ry

,
w

o
rk

-
lo

a
d

a
n
d

n
u
m

b
e
r

o
f

V
M

n
o

n
o

re
sp

o
n
se

ti
m

e
y
e
s

m
a
n
u
a
l

L
Q

N
a
n
d

k
a
lm

a
n

fi
lt

e
r

se
rv

ic
e

le
v
e
l

k
a
lm

a
n

c
o
n
tr

o
l

n
o

[1
0
5
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

h
a
rd

w
a
re

re
-

so
u
rc

e
s

n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

A
N

N
P

M
le

v
e
l

G
A

n
o

[5
5
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

C
P

U
a
n
d

m
e
m

o
ry

y
e
s

n
o

w
o
rk

lo
a
d

a
n
d

p
ro

fi
li
n
g

n
o

m
a
n
u
a
l

m
a
n
u
a
l

se
rv

ic
e

le
v
e
l

d
e
c
is

io
n

tr
e
e

se
a
rc

h
n
o

[1
0
7
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

C
P

U
,

m
e
m

o
ry

a
n
d

d
is

k
n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

A
R

M
A

se
rv

ic
e

le
v
e
l

q
u
a
d
ra

ti
c

p
ro

-
g
ra

m
-

m
in

g

n
o

[1
3
4
]

n
o

a
p
p
li
c
a
ti

o
n

c
o
st

n
o

C
P

U
a
n
d

w
o
rk

-
lo

a
d

n
o

n
o

re
sp

o
n
se

ti
m

e
y
e
s

m
a
n
u
a
l

A
R

M
A

se
rv

ic
e

le
v
e
l

la
g
ra

n
g
e

a
lg

o
-

ri
th

m
a
n
d

P
I

c
o
n
tr

o
l

n
o

[1
1
4
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

C
P

U
n
o

n
o

n
/
a

n
o

n
/
a

n
/
a

se
rv

ic
e

le
v
e
l

fu
z
z
y

c
o
n
tr

o
l

n
o

[4
5
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
n
o

C
P

U
,

m
e
m

o
ry

,
w

o
rk

-
lo

a
d

a
n
d

b
a
n
d
-

w
id

th

y
e
s

n
o

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

li
n
e
a
r

re
g
re

s-
si

o
n

se
rv

ic
e

le
v
e
l

e
x
h
a
u
st

iv
e

n
o

[1
1
3
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

n
o

C
P

U
a
n
d

m
e
m

o
ry

n
o

y
e
s

n
/
a

n
/
a

n
/
a

n
/
a

P
M

le
v
e
l

R
L

n
o

[1
4
1
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

so
ft

w
a
re

C
P

,
C

P
U

a
n
d

m
e
m

o
ry

n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

A
R

M
A

X
a
n
d

S
V

M

se
rv

ic
e

le
v
e
l

P
ID

,
R

L
c
o
n
tr

o
l

a
n
d

e
x
-

h
a
u
st

iv
e

se
a
rc

h

n
o

[9
1
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
a
n
d

c
o
st

w
e
ig

h
te

d
-

su
m

C
P

U
a
n
d

m
e
m

o
ry

n
o

n
o

Q
o
S

a
t-

tr
ib

u
te

s
y
e
s

m
a
n
u
a
l

fu
z
z
y

re
-

g
re

ss
io

n
P

M
le

v
e
l

q
u
a
d
ra

ti
c

p
ro

-
g
ra

m
-

m
in

g

n
o

[2
0
]

n
o

a
p
p
li
c
a
ti

o
n

Q
o
S

a
t-

tr
ib

u
te

s
n
o

w
o
rk
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2.6 Positioning This Thesis

The number of reviewed papers is a result of an investigation over the key conferences

and journals for cloud computing, service computing and self-adaptive systems, such as,

SEAMS, IEEE CLOUD, UCC, TSC and TCC etc. They were then carefully selected

according to their recentness, relevance, quality and completeness of evaluations, with re-

spect to our research questions for cloud autoscaling. However, the resulting list of papers

is not exhaustive, but our investigation and search have tried to improve its conclusiveness

as much as possible.

We further extract the surveyed work by removing similar ones from the same research

group, this results in 74 papers. Table 2.1 summaries the 74 papers and they are compared

using various key criteria of the autoscaling process. The criteria used to compare different

approaches are derived from the key aspects that can affect the designing of autoscaling

system, the formalization of the problem, and the quality of autoscaling process. Their

inclusion is intended to cover the common decisions that need to be made for research in

the field of cloud autoscaling, in this way, a general and normalized comparison is made

possible. It is worth noting that all the criteria serve as the raw data for producing the

taxonomy. That is to say, the classification in this chapter is largely derived from the

results presented in Table 2.1. In Table 2.2, we collectively discuss how this thesis is

different from this work. Notice that not all the work covers every criteria, e.g., the work

on QoS modelling might not cover the aspect of decision making.
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Table 2.2: Comparison of the Thesis with Other State-of-the-Art Researches

Criteria Comparison

Knowledge
in Archi-
tecture

As we can see from the Knowledge in Architecture column, from an archi-
tecture perspective, there is a considerable amount of the existing work (i.e.,
32 out of 74) that do not intend to discuss the required levels of knowledge
and what benefit such knowledge can bring for adaptations. The remaining
work, on the other hand, only implicitly discuss the knowledge required in
a rather coarse granularity (e.g., system model is needed for optimisation).
The absence of explicit consideration for the fine-grained representation of
the knowledge in the architecture can results in, e.g., improper inclusion
of unnecessary knowledge and/or missing important knowledge that can
improve adaptation quality when developing autoscaling systems. Conse-
quently, this fact can mislead the design and application of the underlying
algorithms and techniques. In contrast to the other work, this thesis, as
we will see in Chapter 3, proposes an autoscaling architecture with fine-
grained representation of the required knowledge, which are mapped to the
principles of self-awareness [18].

Considered
Entity

The Considered Entity column describes which level of abstraction that the
work intends to model and scale. Only 12 out of 74 work have considered
cloud-based service, which is the finest level of abstraction to be scaled
in the cloud. The majority of the work (i.e., 60 out of 74) aim at cloud-
based application (or application tier) and the rest focus on other levels.
This thesis has considered the level of cloud-based service, because it offers
better flexibility and the finest modelling granularity in the cloud, as we
will discuss in Chapter 4.

Objectives As we can see from the Objectives column, certain amount of work (i.e., 18
out of 74) consider only specific objectives (e.g., response time and cost)
in autoscaling, which will limit their applicability. In contrast, this thesis
aims for any given QoS attributes and cost as the objectives, providing the
flexibility of the proposed QoS modelling approach, which will be discussed
in Chapter 4 and 5. As we can see, there is also another amount of the
related work that can handle arbitrary QoS attributes, i.e., 37 out of 74
work surveyed. However, their underlying algorithms and techniques are
different from this thesis.
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Objectives
Depen-
dency

As shown in the Objectives Dependency column, most work (i.e., 54 out of
74) do not explicitly consider multiple objectives or they do not intend to
handle the objective dependency exhibited by the multi-objectivity. There-
fore, they can not produce good trade-off decisions. For the work that
does consider multiple, and possibly conflicted objectives, the objective de-
pendency is usually formulated as a weighted-sum relation (i.e., 16 out
of 74). Only 4 out of 74 work have used Pareto relation to model multi-
objectivity with the aim to provide fine-grained information about the trade-
offs. However, these approaches have not considered decisions that achieve
well-compromised trade-offs, meaning that the trade-offs can be imbalanced.
Unlike that work, this thesis not only models multi-objectivity as Pareto re-
lation, but also intend to search for decisions that achieve well-compromised
trade-offs using nash dominance and distance of decisions.

Primitives The Primitives column shows what are the cloud primitives that a work
has considered. Most work (i.e., 60 out of 74) have only considered specific
dimensions (e.g, CPU and memory) of the primitives in the cloud, which
will limit their applicability. In contrast, this thesis and the remaning small
amount of related work focuses on any given primitives. In addition, this
thesis also additionally considers software control primitives and their in-
terplay with the hardware resources, which are the important, but often
ignored cause of the fluctuation in QoS. As we can see, there are only 14
out of 74 approaches in the work surveyed have considered software control
primitives. However, this thesis applies different algorithms and techniques
which offers various benefits, as we will see in the following chapters.

Use Bun-
dles

As in the Use Bundles column, modern cloud providers (e.g., Amazon)
enable autoscaling based on bundles, which is a collection of some fixed
configurations (usually at coarse granularity). The benefit is that by limiting
the possible autoscaling decision using bundles, the decision making process
can be greatly simplified, in which case a simple exhaustive search would be
also quite effective. Therefore, 20 out of 74 work has assumed fixed bundles
in their autoscaling approaches. However, these fixed bundles cannot meet
the increasingly complex demand of cloud-based services, e.g., a cloud-based
service may require high CPU but low memory. Consequently, this fact will
negatively affect the quality of autoscaling and elasticity. There is a large
amount of related work (i.e., 54 out of 74) that does not assume fixed
bundles, which are the same as this thesis. However, this thesis applies
different algorithms and techniques in the decision making process which
offers various benefits, as we will see the the following chapters.
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QoS Inter-
ference

As mentioned previously, QoS interference is an important factor to elastic-
ity in the cloud. Inadequate handling of QoS interference can result in low
quality of autoscaling and elasticity. However, as shown in the QoS Inter-
ference column, only 8 out of 74 work on cloud autoscaling have explicitly
modelled and/or handled QoS interference in the cloud autoscaling, but
they either ignore or tend to be limited in handling the trade-offs caused by
QoS interference. This thesis is different from the related work in the sense
that it does not only explicitly model QoS interference, but also effectively
resolve the trade-offs between cloud-based services that caused by QoS in-
terference. In addition, we collectively consider QoS interference caused
by both the co-located service and co-hosted VM, which has not been well
studied in existing work. We will discuss this in the following chapter with
greater details.

Modelled
QoS At-
tribute

The Modelled QoS Attribute column indicates what are the quality at-
tributes that the autoscaling approach intends to model, excluding the cost.
Modelling in autoscaling can greatly improve the decision making process.
21 out of 74 work do not explicitly handle and model QoS while 19 work
model certain dimensions of QoS only (e.g., response time). Similar to the
rest of related work, this thesis models any given QoS attributes. However,
as we will see in Chapter 4 and 5, the underlying QoS modelling approach is
different. As mentioned previously, apart from modelling QoS, autoscaling
approaches can also rely on workload or demand modelling. However, these
models cannot be used to reason about the effects of decisions on the objec-
tives. We leave the study about whether and how the workload or demand
models can be used to consolidate the QoS model as one of our future work.

Modelling
Status

The Modelling Status column indicates whether the approach can be applied
for online modelling. As we can see amongst the approaches that handle
QoS modelling, 34 out of of 53 work only focus on offline while the rest can
be applied online. The benefit of offline modelling is that there is no need
to concern with the modelling overhead, however it is unable to cope with
emergent events, e.g., spike workload. On the other hand, online modelling
can be used to deal with unexpected scenarios, but its overhead can be a
critical issue. This thesis focus on online modelling, however, when offline
modelling is beneficial for online scenarios, the proposed approach can be
also used offline.
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Primitives
Section for
QoS

Primitives Section for QoS shows the algorithms and techniques used to
select important inputs for QoS models. As we can see, amongst the ap-
proaches that model QoS, nearly all (i.e., 50 out of 53) of the related work
have relied on manual and offline approach for the selection. However, man-
ual analysis may ignore important features or incorrectly select irrelevant
features, which would eventually downgrade the model accuracy. There
are only three of the work have considered dynamic primitives selection;
however, they focus on the relevance of the inputs while ignoring the redun-
dancy of the inputs which have already selected. This fact, as we will show
in Chapter 5, can also negatively affect the model accuracy. This thesis is
separated form existing work in the senses that the primitive selection is
performed dynamically, and with the consideration of balanced information
relevance and redundancy.

QoS Func-
tion Train-
ing

QoS Function Training shows the algorithms and techniques used to model
the correlation between selected primitives and the QoS. There are work
relies on manual and analytical approaches; have used simulation and the
rest are machine learning based. However, all the approaches are relied
on single algorithms, i.e., only one algorithm is used offline or online. In
Chapter 5, we will show that different algorithms perform quite differently
under given scenarios, therefore, such a fact means that the selecting the
most appropriate single algorithms for QoS modelling in the cloud is mere
difficult, if not possible to achieve. In addition, even it can be selected,
there is no guarantee that it can be always the best at runtime. Although
in the case of modelling workload and demand, we have discovered 2 work
that considered multiple learning algorithms, there is still no instance for
QoS modelling. As we will see in Chapter 5, this thesis relied on multiple
algorithms where the optimal one would be used for modelling and predic-
tion. It is also different from the ones for demand and workload modelling
in the sense that it focus on selecting the best algorithm on-the-fly; while
[79] aim at ensemble solution at runtime and [72] is an offline approach.

Granularity
of Control

Granularity of Control shows at which granularity level the autoscaling
decision would be made. As we can see, 2 out of 74 work have use multiple
levels of granularity while the rest work have assumed a single granularity
in autoscaling. However, they are static and fixed on the granularity of
control. This means that, once the effects of control granularity on the
global benefits changes (e..g, due to QoS model change), they would not
be able to optimise for the global benefits; or they would have been in a
unnecessarily high level of control (e.g., cloud level) that benefit nothing
but generating extra overhead. Unlike any of the existing work, this thesis
work on dynamic granularity of control, in which the control level can be
changed at runtime subject to QoS sensitivity and deployment. We will
discuss this in greater detail in Chapter 6.
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Decision
Making

Decision Making shows the algorithms and techniques used to perform
trade-off decision making for autoscaling in the cloud. We can see that
8 out of 74 work are rule-based approaches and hence they tend to be lim-
ited in handling dynamics, uncertainty and trade-offs in cloud. 14 out of 74
work are based on control theory, which can not explicitly handle trade-off
decision making. Among the reset search based optimisation for autoscaling
in cloud, 9 take implicit approach, e.g., model free RL, which do not guided
by explicit QoS model and hence they tend to be limited in reasoning about
the trade-offs. 12 of the work assume single objective and apply algorithms
that only work on single objective optimisation. A large amount of the
work (i.e., 16 out of 74) aggregate multi-objective into a weighted-sum for-
mulation, and resolve the decision making as single objective optimisation.
However, it is generally difficult to correctly specify the weights, in addition,
weighted-sum formulation can restrict the quality of trade-offs. There are
only 4 work have considered pareto relation of the multi-objectivity, and
they rely on MOGA, mostly NSGA-II for the optimisation. Different from
all the existing work, this thesis formulates the trade-offs decision making
problem in autoscaling using pareto relation where the multi-objective opti-
misation is resolve by Multi Objective Ant Colony Optimisation (MOACO).
This is because the commonly applied MOGA, such as NSGA-II, needs
pareto-dominance to evaluate the overall quality of decisions for all objec-
tives as the algorithm runs, hence it can be restricted by an inevitably large
number of non-pareto-dominated decisions when the number of objectives
increases. Such fact has been shown to be limited in optimising and making
trade-off for more than 4 objectives [33] while our problem needs to handle
larger number as we consider the trade-offs caused by QoS interference. We
will discuss this in Chapter 7 with greater details.

Well-
Compro-
mised
Trade-offs

As we can see from Well-Compromised Trade-offs, none of the existing work
have considered well-compromised trade-offs, which means the achieved de-
cisions may lead to imbalanced improvements on the objectives. In con-
trast, this thesis explicitly aim to search for decisions that achieve well-
compromised trade-offs, as we will show in Chapter 7.

According to the above table, It may seem that the proposed autoscaling framework

introduce various positive points as when compared to existing work. However, this does

not come as free. In the following, we discuss some potential negative aspects of our

framework:

• Scalability: Given the fact that our approach aims to handle dynamics and uncer-

71



tainty at runtime, making the autoscaling process self-aware is likely to produce

extra computational effort, which in turn imposes scalability issue. However, as

we will discuss in Chapter 7, our methods and approach has been designed in the

way that takes scalability into account. For example, the whole idea of dynamically

determining the granularity of control in cloud is aimed to improve scalability. This

is because there may be some period of time that the autoscaling system operates at

fine-grained control can still yield the optimal benefits, and such control would also

produce less overhead, as the number of objectives in a decision making process is

reduced. Dynamically switch the system to fine-grained control would potential, in

a long term, improve the overall scalability. In Chapter 7, we will discuss scalability

of our framework in greater details.

• Complexity: The self-awareness in our framework is fundamentally grounded on

advance computational intelligence techniques, which may need to be tuned by

adjusting their parameters. To achieve such, it does requires some knowledge about

the underlying algorithms and some profiling techniques. In Chapter 7, we will

discuss the complexity of applying our framework in greater details.

• Integration with existing autoscaling system: There may be scenarios where it is

difficult to apply the entire autoscaling framework, e.g., when there is a legacy

autoscaling system and it is too expensive to replace it. To mitigate this issue, we

have designed each component in a way that they can be seamlessly attached to

existing modules, in order to achieve certain tasks (e.g., QoS modeling). In Chapter

7, we will discuss practical deployment of our framework in greater details.
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2.7 Conclusion

In this chapter, we described the background and definitions for cloud autoscaling, self-

aware and self-adaptive systems in general. Subsequently, we outlined the major re-

quirements for the key logical aspects of autoscaling in the cloud, and discuss the key

state-of-the-art developments proposed for each of the logical aspects. Furthermore, we

explicitly discussed the differences of this thesis to the related work and identified the gap

in this area of research.

In the next chapter, we propose a self-aware architecture for autoscaling in the cloud,

which is enabled and driven by mapping the necessary components to different levels of

self-awareness capabilities.
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Chapter 3

An Architecture for Self-Aware

and Self-Adaptive Autoscaling in

Cloud

3.1 Introduction

Engineering and design autoscaling system in the cloud is a complex process due to the

dynamic and uncertain nature of cloud environment. As discussed in Chapter 2, most of

the prior work e.g., [141] [23], tend to be limited in one or more logical aspects of the

autoscaling process. This can be attribute to the fact that their approaches, especially

their architectures, lack to capture the necessary knowledge for optimising the QoS and

cost objectives of all cloud-based services. These knowledge can be well-represented and

acquired through self-awareness at runtime, and thus render self-awareness as a neat

solution to overcome the limitation in existing work.

The autoscaling architecture, being the skeleton of an autoscaling system, is a fun-

damental element that blueprints the necessary components and their interactions. We

argue that incorporating the principles of self-awareness at the architecture level is likely
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to advance the way we engineer self-aware and self-adaptive autoscaling system.

3.1.1 Motivation

Given the definition of autoscaling presented in Chapter 1 and our discussion in Chapter

2, it is clear that autoscaling systems are essentially self-adaptive systems. One general

task for architecting self-adaptive systems is to determine what is the necessary knowledge

that the system maintains, and how the knowledge can be acquired. Designing autoscal-

ing system in the cloud is not an exception. As mentioned in Chapter 2, the inadequacy

of necessary knowledge can resulted in various limitations of the system. This includes,

for examples, the absence of accurate QoS models causing the system not be able to

reason about the likely effects of adaptation and the possible trade-offs; or ignoring QoS

interference can degrade the effectiveness of the autoscaling. The difficulty lies in how to

classify the necessary knowledge of an autoscaling system and more importantly, how to

acquire such knowledge and how they can improve the adaptation. As we mentioned in

Chapter 1, given the heterogeneous, elastic and on-demand nature of cloud, autoscaling in

the cloud exhibits high dynamics and uncertainty related to QoS modelling, granularity

of control and the trade-off decision making. These unique problems are within the scope

of self-awareness principle and its capabilities [18], and hence rending it as a promising

solution for autoscaling in the cloud. However, the challenge now becomes how to in-

corporate and map the principles of self-awareness to autoscaling in the cloud, how the

architecture can be enriched and how we can carefully justified benefits of self-awareness

capabilities.

As we have extensively surveyed in Chapter 2, existing autoscaling architectures have

heavily relied on traditional styles (e.g., MAPE [84] and OAD [74] based) for self-adaptive

systems, which are focus mainly on the interactions among different logical aspects of a

system and their degree of centralisation. However, these architecture styles lack in cap-
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turing different levels of knowledge in a fine-grained representation. In particular, the

widely adopted MAPE style in autoscaling architecture only model the knowledge in a

coarse grained manner. Therefore, the MAPE is only capable to implicitly consider the

self-awareness of the knowledge that the system requires. From an architecture perspec-

tive, this is not immediately intuitive to deduce which concerns the system addresses in

the adaptation. OAD is another style that claimed to be self-aware, however, instead of

explicitly model different levels of knowledge, it emphases on a separation or decoupling

between the representation of the knowledge and the decision making process. Autoscaling

architecture based on feedback loop control that embedded with computational intelli-

gence or control theory techniques are also exist, e.g., [141]. Nevertheless,they either do

not consider self-awareness and how it can be used to strength the adaptation or such con-

sideration is implicit. In addition, they are problem specific and do not model the generic

concern of knowledge, e.g., with respect to goal, time and interaction. The absence of

fine-grained representation of knowledge in the architecture can mislead the design and

application of the underlying computational intelligence and/or economic driven tech-

niques. As a result, all those limitations call for novel autoscaling architecture, which

should encapsulate fine-grained information about what levels of knowledge are required;

how they can be acquired and how they can be beneficial for the adaptation.

3.1.2 Contributions

In this chapter, we present an autoscaling architecture leverages on the principles of self-

awareness and its mapping to various self-awareness capabilities. By doing so, we obtain

an enriched architecture with detailed information about what are the necessary levels

of knowledge and their interplay. These levels of knowledge and their interplay promotes

better self-adaptivity through bi-directional adaptation in the architecture, in which the

autoscaling process is not only able to adapt the underlying cloud-based services and
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Figure 3.1: The Components of Autoscaling Architecture.

VMs, but also capable to further consolidate itself by acquiring the knowledge about

itself and the environment. It is worth noting that we only focus on high level view of

the architecture in this chapter, the details of each component in the architecture and the

related algorithms will be explained in the subsequent chapters.

3.2 Autoscaling Architecture

As concluded by a recent survey [98], the most common components in the simplest

autoscaling system includes a monitor and a scaling unit: the former gathers the service’s

or application’s current state while the later utilise the information to decide an action.

However, such approach lacks to capture the necessary levels of knowledge and thus the

system can be limited in its adaptation behaviours. To overcome such issue, we propose

an autoscaling architecture that offers a unified solution to handle runtime dynamics,

uncertainty and trade-offs related to different QoS and cost objectives. As the component

diagram depicted in Figure 3.1, the main logical aspects in autoscaling are explicitly

modularised into five components, which are described below:

• Sensor: The Sensor collects raw data from the underlying service-instances, plat-

form and infrastructure through the corresponding interfaces or logs as offered by
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the cloud provider. This data includes the currently achieved QoS, environmental

primitives, software and hardware control primitives, as well as the agreed con-

straints in SLA and budgets. In particular, the sensors should sense the data for

those service-instances that are likely to have objective-dependency.

• QoS Modeller: All historical data from data sensors is analysed in this component

using information theory and machine learning algorithms. Its goal is to model

the correlation between QoS and the underlying cloud primitives. For each QoS

attribute of a service-instance, the QoS Modeller filters unnecessary inputs for the

QoS and dynamically update their magnitude in the correlation; it is also QoS

interference aware by including the primitives of co-located services and co-hosted

VMs into the model. Notably, the QoS Modeller runs periodically for collecting data

and modelling the QoS, which means it is capable for dynamically and continually

improving the models for handling runtime uncertainty. The resulted models are

particularly useful for reasoning about the effects of autoscaling decisions and their

possible trade-offs. Details of the proposed QoS modelling approach are explained

in Chapter 4 and 5.

• Region Controller: This is the component that rarely exist in current work, as we

have surveyed in chapter 2. Such intermediate component between QoS Modeller

and Decision Maker explores full information about QoS sensitivity expressed in the

QoS models, and thus enable better global results with reduced overhead. Specifi-

cally in Region Controller, the most up-to-date QoS models and the cost models are

dynamically clustered into regions, in each of which the objectives are dependent

(i.e., harmonic or conflicted). This is achieved by examining whether the models

have the common inputs that are parts of the autoscaling decision. If these common

inputs exist, it means that the objectives are dependent and can be affected differ-
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ently by the same decision; hence, they need to be considered in conjunction with

each other in the decisions making process. On the other hand, the objectives, which

are independent, are omitted from the same decision making process as they can

benefit nothing but generate overhead. The Region Controller can help to dynami-

cally determine the right granularity of control and thus, the autoscaling system can

better globally optimise all cloud-based service while resulted in reduced overhead.

Details of the proposed region clustering approach are specified in Chapter 6.

• Decision Maker: Given the QoS models and the regions, the Decision Maker

component is responsible to search for an autoscaling decision that optimises the

QoS and cost objectives of the cloud-based services. By leveraging on search-based

optimisation, the decision making process can perform exploring and reasoning in a

finite, but possibly very large search space; while still produces the optimal (or near-

optimal) decision. Such process can also adaptively handle trade-offs on objectives,

even in the absence of preference. Details of the search-based decision making

process are specified in Chapter 7.

• Actuator: Once the final autoscaling decision has been produced, we consider

both vertical scaling and horizontal scaling in the Actuator component. In our sys-

tem, vertical scaling always takes higher priority, providing that modern hypervisors

(e.g., Xen [6]) can achieve dynamic vertical scaling with negligible overheads. The

resources on a PM are provisioned to the VMs in a first-come-first-serve basis. The

horizontal scaling, on the other hand, is only triggered when the resources of the PM

tends to be exhausted, i.e., when the total upper bounds of all co-hosted VMs for a

resource type exceeds the PM’s capacity, the last service-instance that requires to

increase the upper bound would be migrated/replicated. Likewise, a VM is removed

when its provisions and utilisations for all resource types are below thresholds.
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This architecture summarises the key components and features for autoscaling system.

To better describe the marriage between self-awareness and autoscaling, we have proposed

a set of self-aware patterns, which serve as a general guideline for architecting self-aware

systems.

3.3 Self-Aware Patterns

When faced with the task of designing self-aware computing system, researchers and

practitioners need a set of guidelines on how to use the concepts and principle of self-

awareness [18]. To this end, we have documented different categories of self-awareness

capabilities using 8 architectural patterns, which serve as the guidelines on how to design

self-aware computing systems in a principled way. The aim of those patterns is to ensure

that, when designing self-aware systems, only relevant types of knowledge are included,

and their inclusion justified by identified benefits. To better illustrate the self-aware

pattern and its origin, we briefly specify one exampled pattern in the following:

The pattern shown in Figure 3.2, is suitable for situations where goals, time and

interactions between machines and processes need to be captured. Here, goal awareness

enables the representation of changing runtime goals, so a node can share its knowledge

with other goal-aware nodes and the system can adapt to the changed goals. Time

awareness allows the representation of temporal knowledge about goal and interaction

awareness, enabling capabilities such as forecasting. This pattern also adds meta-self-

awareness, enabling the system to manage the trade-offs associated with exercising various

self-awareness levels and thereby allowing it to modify goals at runtime. An example of

this runtime meta-reasoning is the dynamic selection of the most appropriate learning

algorithm for a particular context.

Please refer to Appendix A and our handbook [39] for more detailed specifications of

the patterns.
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Figure 3.2: The Goal Sharing with Time-Awareness Capability Pattern. There are three
types of multiplicity operators (Mul Op): * expresses that the number of capability of
the same type in the interaction is restricted to at least one. 1 indicates that one and
only one capability of the same type is permitted. + indicates that zero, one or many of
the type specified is permitted in the interaction.

3.4 Mapping Between Self-Aware Pattern and Au-

toscaling Architecture

To apply self-awareness at the architecture level, it is essential to systematically map a

selected self-aware pattern to the architecture components of the given problem domain,

which in this thesis is autoscaling in the cloud.

Recall that in general term, the ’self’ (or node) can be any conceptual part of the

system being considered, e.g., process, component or machine. The cloud autoscaling

system is typically composed of numeric physical machines, each of which running services

benefiting from virtualization. In this context, ’self’ is simply the autoscaling process on a

physical machine. Self-awareness for an autoscaling process is to aware of the knowledge

about its own (or the others’) possible impacts on the QoS models of the managed services,

the granularity of control and the quality of trade-offs decision for a given runtime scenario.

Based on the knowledge acquired via self-awareness, we promote bidirectional adaptations
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Figure 3.3: The Mapping Between Autoscaling Components and The Self-awareness Ca-
pabilities.

in an autoscaling process. In one direction, adaptation can be concerned with adapting the

configurations for its services and virtual machines. On the other direction, adaptation

can consolidate its own autoscaling capabilities. This is concerned with building more

accurate QoS models, identifying better granularity of control and making better trade-

offs decisions. The bidirectional adaptations, through the principles of self-awareness, aim

at improving the effectiveness and self-adaptivity of autoscaling.

With that context in mind, the autoscaling architecture proposed in Section 3.2 is

then systemically mapped to the self-awareness capabilities (Figure 3.3) and to a concrete

instance of a carefully selected self-aware pattern (Figure 3.4 left). To select the self-

aware pattern, we have followed the systematic mapping guideline, which is a result of

our Work Package from the EPiCS project [18]. This systematic mapping guideline, which

by itself is standalone contribution, has been thoroughly documented in our handbook

[39]; and it has been reviewed and evaluated by different partners of the EPiCS project

[18]. Additionally, the application of such mapping guideline in the context of cloud
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autoscaling has been illustrated as a case study in the handbook.

As we can see from Figure 3.4, the mapping process has identified Goal Sharing with

Time-Awareness Capability Pattern as a suitable pattern for addressing the challenges

of autoscaling. The arrows in Figure 3.4 represent either data or control flow . As we

can see from the left figure, different levels of awareness require control or data flow

to achieve collaborations. This has provided guidance on how to correctly incorporate

self-awareness with autoscaling architecture.The autoscaling architecture is then enriched

with self-awareness capabilities, shown as the deployment diagram in Figure 3.4 right.

Given that it can be hard to directly achieve self-awareness for a complex autoscaling

process, we have modularised the self-awareness capabilities into different internal selves
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as encapsulated by three components. Consider the autoscaling system of the cloud, which

is composed of self-aware autoscaling processes on different physical machines. Here,

each autoscaling process would have different internal selves: these are the processes in

QoS Modeller, the Region Controller and the Decision Maker component; in this way,

we hope to make these processes more intelligent using self-awareness. The autoscaling

system is realised as a decentralised instances, where an instance coordinates the selves to

realise self-awareness in autoscaling. The components in our autoscaling system, except

QoS Modeller, are triggered when the system detects violations of the requirements, i.e.,

violations of SLA and utilisation constraints in case of over-provision. In particular, a

requirement is said to be violated only if such violation has been observed for more than

n sampling intervals, where n is a variable that controls the trade-offs between stability

and adaptivity of our system. The sensors on a PM does not only sense data, but also the

QoS models from other PMs. This is because a cloud-based service can, in some cases, be

functionally dependent on services running on the other PMs, thus creating the chances

for objective-dependency.

In the following sections, we further discuss how the self-awareness capabilities, which

have been explained in Chapter 2, are mapped in the context of different internal selves.

3.4.1 Mapping Self-Awareness in QoS Modeller

The QoS modelling approach is enriched by self-awareness. At this level, ’self’ refers to

the QoS modelling process in autoscaling. Self-awareness is concerned with knowing how

the QoS modelling can be affected by:

• Features (e.g. workload) of QoS attributes and their changes - Stimulus-awareness.

• Possible QoS interference and contention - Interaction-awareness.

• Historical modelling errors and data trends - Time-awareness.
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• Changes in utility functions of QoS - Goal-awareness.

• Suitability of learning algorithms - Meta-self-awareness.

These levels of knowledge promotes the awareness of QoS sensitivity, i.e., with respect to

which, when and how cloud primitives correlate with the QoS. As the knowledge changes,

the QoS modelling process can benefit from self-awareness to dynamically self-adapt the

selected features and expressions of its QoS models at runtime.

By leveraging on the advances of machine learning algorithms, self-awareness not only

able to better handle dynamics and uncertainty, but also eliminates the need for heavy

human analysis and prior design time knowledge in the QoS modelling. However, because

there is no single learning algorithm which can outperform the others constantly across

a range of scenarios, selecting the right algorithm is a challenging task for developers.

Self-awareness can even address this issue by using the notion of meta-self-awareness,

which performs reasoning at the meta-level, i.e., the modelling process is aware of what is

the best algorithm to enable other self-awareness capabilities. In such way, self-awareness

help to achieve more accurate and more effective QoS modelling.

3.4.2 Mapping Self-Awareness in Region Controller

To improve the global benefit with respect to QoS and cost objectives of all cloud-based

services, we dynamically identify the right granularity of control building on self-awareness

capabilities [18]. By leveraging on the QoS and cost models, self-awareness helps to

adaptively cluster objectives into different regions according to objective dependency ,i.e.,

we put objectives in one region as long as they have common cloud primitives, which are

parts of the final autoscaling decision, in their models. The regions can be different in

size and this promotes dynamic granularity of control. We then consider the objectives

from each regions in separated decision making processes. A self-aware and self-adaptive

process is realised in the Region Controller, which maintains different regions. At this
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level, ’self’ refers to the region controlling process in the autoscaling. Self-awareness here

is concerned with knowing how such process can be affected by:

• QoS and cost models - Goal-awareness.

• objective dependency, i.e., conflicted or harmonic goals - Interaction-awareness.

These levels of knowledge promotes the awareness of the effects of control granularity on

the global benefit. Henceforth, the region controlling process can better self-adapt its

regions and their content to the dynamic changes in knowledge. As such, self-awareness

improves global benefits while reducing overhead.

3.4.3 Mapping Self-Awareness in Decision Maker

Once the QoS models and regions are defined, we are faced with trade-offs when au-

toscaling in the cloud. In the Decision Maker, we take a multi-objective representation to

model the trade-offs of QoS and cost objectives for different cloud-based services, and the

problem is resolved by a self-aware and self-adaptive process. At this level, ’self’ refers

to the decision making process in the autoscaling. Self-awareness here is concerned with

knowing how the decision making can be affected by :

• QoS and cost models, as well as their requirements - Goal-awareness.

• regions of objectives, which represent the positive, negative or zero interaction be-

tween objectives during decision making - Interaction-awareness.

Obtaining these levels of knowledge mean that the decision making process is capable to

self-adapts its behaviour in the search for better trade-offs decisions. Specifically, self-

awareness assists the decision making process in extensively reasoning about the effects

of autoscaling decisions on goals and the possible trade-offs. By leveraging on modern

search based algorithms, the reasoning serves as a strong assurance about the quality of
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autoscaling, especially when the search space is incredibly large (i.e., too many combi-

nations of software configurations and hardware resource provisions), which cannot be

handled by human decision maker. More importantly, the knowledge acquired from self-

awareness helps the process to self-adapt its own search behaviour for better optimality

and diversity, e.g., exploring more on the decisions that contain high CPU allocations

and more beneficial for certain goals. This permits the Decision Maker to handle com-

plex trade-offs even without prior preferences, i.e., achieving well-compromised trade-offs,

which largely improving majority of the goals while causing relatively small degradations

on others. Given that the regions are dependent to each others, we only make decisions

for the regions containing the objectives whose requirement violations have been detected.

process is needed.

3.5 Conclusion

As cloud computing continuous to evolve, autoscaling requires novel principles and ap-

proaches to seamlessly manage the underlying cloud-based services. Self-awareness pro-

vides highly promising avenue for improving self-adaptivity and the effectiveness of au-

toscaling in the cloud. In this chapter, we describe the autoscaling architecture and its

mapping to self-awareness capabilities and the related pattern. We focus on discussing

how the principle of self-awareness can be beneficial for various logical aspects in autoscal-

ing, including QoS modelling, identifying granularity of control and making trade-offs

decisions. In Chapter 4, 5, 6 and 7 we will experimentally evaluate each of these logical

aspects in details.

In the next chapter, we will explore the first internal self, namely QoS Modeller, in

the self-aware autoscaling architecture. Specifically, in such internal self, we propose a

self-aware and self-adaptive QoS modelling approach, which is capable to dynamically

correlate QoS attributes to various cloud primitives on-the-fly.
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Chapter 4

Self-Aware and Self-Adaptive QoS

Modelling in Cloud Autoscaling

4.1 Introduction

The elasticity of cloud has caused a paradigm shift in the way we manage and continually

evolve cloud-based software services. However, it would be difficult for software engineers

and cloud engineers to predict the wide variation of behaviours that software services

can experience when running on a shared and on-demand environment such as the cloud.

It is particularly hard to anticipate the dynamic changes in workload and the runtime

demands of these cloud-based software services. This fact implies that it becomes more

complex to assure the Quality of Service (QoS) when engineering cloud- bases services.

The design of offline and manual management strategies for QoS are mere difficult if not

impossible exercise to achieve.

With such context in mind, the key problem, which cloud/service providers face is

how to manage runtime QoS by autoscaling to the best set of control values on-the-fly. In

particular, the fundamental challenge is how to dynamically link QoS with the primitives

in cloud, which we address in this Chapter. QoS models allow the use of primitive values as
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inputs and predict the likely QoS value as outputs. An accurate QoS model in the cloud

can serve as a powerful tool that assists software/cloud engineers or other automated

agents to profile service characteristics (e.g., CPU intensive services); to diagnose the

cause of violation on QoS requirements; and more importantly, to compare and reason

about different elastic autoscaling decisions in the cloud.

As we have extensively surveyed in Chapter 2, the majority of the existing approaches

for QoS modelling in cloud has been either static (i.e., analytical [77] and simulation based

[55]) or semi-dynamic [90]. The former is being static in the sense that the expression of

models are fixed, and therefore, they are insensitive to the QoS fluctuations at runtime;

this is due to the entire modelling process has relied on manual and offline analysis. On

the other hand, the semi-dynamic approaches focus on adaptive and dynamic modelling

of the magnitude of primitives in correlation to QoS, which means the model changes

with respect to the QoS fluctuations. However, their selection of primitives to determine

the feature inputs of models has been manual and offline, resulting fixed inputs for the

models. As a result, they suffer limited self-adaptivity.

4.1.1 Motivations and Challenges

In this section, we motivate the proposed approach by identifying several important chal-

lenges for QoS modelling in the cloud, which have not been or have only been partially

considered in previous work.

Fine-grained QoS Modelling: There can be different cloud-based software ser-

vices running on a VM, each with its own QoS requirements. Fine-grained QoS mod-

elling is challenging as more heterogeneity (e.g., QoS requirements, their derivatives and

service characteristics etc.) need to be considered. However, existing static and semi-

dynamic modelling tend to focus on the mean and aggregate QoS of the entire VM. Such

coarse-grained analysis suffers from limited sensitivity; it does not apportion sensitivity to
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changes in QoS of each individual services and the primitives. As a result, the modelling

of QoS tend to be inaccurate and limited for individual software service; more accurate

and effective modelling needs to be approached from a fine-grained perspective.

Dynamic and Uncertain QoS Interference: QoS modelling in the cloud suf-

fers from the problem of QoS interference. QoS interference refers to scenarios where

a software service exhibits wide disparity in its QoS performance that depends on the

dynamic behaviours of its neighbours. In particular, we distinguish two major causes of

interference, these are: co-located service interference and co-hosted VM interference. In

this chapter, we particularly focus on the QoS interference caused by co-located services

on a VM; we leave the problem of co-hosted VM interference to the next chapter. Given

that the QoS interference tends to be dynamic and uncertain in nature, the challenge lies

in the difficulty to dynamically incorporate the information about the related interference

in the modelling. Despite the fact that QoS interference is important for QoS modelling

in the cloud, there are not many work that target for this challenge. In addition, existing

work consider co-hosted VM interference only (e.g., [116]). As a result, such absence

of QoS interference in the model can downgrade the accuracy and/or lead to incorrect

autoscaling decision.

Dynamic and Uncertain QoS Sensitivity: The core of QoS modelling is how to

model its sensitivity with respect to the primitives in cloud. By QoS sensitivity, we are

interested in which (e.g., are CPU and throughput correlated?), when (i.e., at which point

in time they are correlated?) and how (i.e., the magnitude of primitives in correlation) the

primitives correlate with QoS. Given the dynamic and on-demand nature of cloud, QoS

sensitivity is dynamic and uncertain, i.e., runtime changes occur in terms of which, when

and how primitives correlate with QoS. Specifically, the challenges of QoS sensitivity in

the modelling can be attributed to two important phases, namely primitives selection and

QoS function training:
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Figure 4.1: The Exampled Correlation Between Response Time and CPU.

• Primitives Selection: To model QoS and its sensitivity in the cloud, a fundamental

task is to adaptively determine what are the primitives that should be used as feature

inputs of the model (i.e., which and when the primitives correlate with QoS). To

show a simple example of the dynamics and uncertainties in primitives selection, in

Figure 4.11, we vary the workload of a service while keeping that of the co-located

services and co-hosted VMs unchanged, we can see that the Response Time of the

said service tends to be insensitive to CPU at the beginning hence it cannot provide

relevant information about the QoS. However, after the 18th interval, the Response

Time gradually become more affected by the CPU as the workload change by time,

which is uncertain in nature; this becoming even more true in the cloud when

there is uncertain QoS interference, i.e., the workload of neighbour services/VMs

changes. Therefore, the primitives selection needs to cope with the dynamics and

uncertainties in QoS sensitivity. Given that the selected inputs have a great impact

1The data is obtained based on our experiments in Section 4.4
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to the model accuracy (as we will show in Section 4.4.1), it is important to select

a relevant set of primitives. However, this is a challenge providing the uncertainty

of the relevance between QoS and cloud primitives, it is even harder when we take

QoS interference into account. Nevertheless, majority of the existing static and

semi-dynamic approaches for QoS modelling in the cloud rely on fixed and manual

analysis to select the primitives as inputs, which are often offline. In addition, prior

work only consider hardware resource while ignoring the software configurations,

which can interplay with the hardware provision to influence QoS; these are often

the primary causes of QoS violations [26] [139] [99].

• QoS Function Training: Another important task in modelling QoS and its sensi-

tivity is to adaptively determine how the primitives correlate with QoS by means

of mathematical function. To show a simple example of the dynamics and uncer-

tainties in QoS function training, we use the aforementioned setup in Figure 4.1.

As we can see, from the 18th interval onwards, the Response Time of the service

is becoming more sensitive to CPU till 30th where the sensitivity is starting to

decrease. This shows that the Response Time is always sensitive to CPU for the

period, but the magnitude tends to be different depends on the uncertain changes

of workload from time to time. Again, this becomes more complex in the cloud

when it involves changing workloads of neighbour services/VMs. All These facts

imply that the modelling needs to be able to handle the dynamic and uncertain

magnitude of primitives in the correlation, which is a challenge. Consequently, the

static QoS modelling approaches tends to be insufficient, because the effectiveness

of these approaches is restricted by their simplified and fixed assumptions on the

environment and service’s internal operations [90], which limits them for handling

the dynamics and uncertainties of QoS sensitivity in cloud. On the other hand, the

semi-dynamic approaches are capable to handle this challenge as they are grounded
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on sound machine learning algorithms, which tend to be dynamic and self-adaptive

in nature. In addition, they rely on no or limited assumptions. Particularly, the

online version (e.g., [87]) has been proposed to overcome the inadequacy of the of-

fline version (e.g., [90]) in dealing with the uncertain changes of QoS sensitivity at

runtime. However, selecting and efficiently adopting these learning algorithms for

QoS modelling in the cloud is a challenge. Each learning algorithm has both advan-

tages and disadvantages, e.g., a complex and nonlinear algorithm may be suitable

for handling complex correlation, but the training overhead may be high. On the

other hand, a linear algorithm can be efficient, while it may lack in dealing with

frequent fluctuation. Given the dynamic and uncertain correlation between QoS

and the cloud primitives, it is remain unclear about which are the suitable class of

learning algorithms for QoS modelling in the cloud.

All these challenges and limitations of existing work call for novel and fully-dynamic

QoS modelling approach in the cloud, with limited or no human intervention.

4.1.2 Contributions

In this chapter, we propose a self-aware and self-adaptive QoS modelling approach for

each individual cloud-based service. It grounds on sound information theory and ma-

chine learning algorithms, which are the key enablers of realising self-awareness for QoS

modelling in the cloud. Our approach is fully-dynamic and it is capable to adaptively

capture the dynamics of QoS sensitivity by determining which, when and how primitives

correlate with QoS at runtime. In particular, we have relied on symmetric uncertainty

[130] from information theory to quantify the relevance between two random variables.

This is motivated by the fact that it is an highly intuitive and efficient metric supported

by strong theoritical foundations. Subsequently, we combine symmetric uncertainty with

two learning algorithms: Auto-Regressive Moving Average with eXogenous inputs model
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(ARMAX) [22] and Artificial Neural Network (ANN) [119] to reach two formulations of

the model. The choice of ARMAX and ANN is driven by the fact that they are the most

commonly applied algorithm for QoS modeling in the cloud, and that they represent two

extreme groups of algorithms in machine learning: ARMAX is essentially linear regres-

sion, which is simple and fast; while ANN is capable to handle nonlinear correlation but

could lead to high complexity. Experiment results show that our models produce bet-

ter accuracy when compared with conventional ones. In comparison of the two resulting

models, our Sensitivity-aware ANN (S-ANN) can better handle dynamic QoS sensitivity

and produce higher accuracy when the fluctuation of measured QoS increases, whereas

our Sensitivity-aware ARMAX (S-ARMAX) produces less error when such fluctuation

decreases.

4.2 Problem Analysis and Models

In this section, we present our assumptions, the system model and the abstract QoS

model that drive our design. These assumptions and models will be used in the following

chapters of this thesis.

4.2.1 Cloud System Model

As mentioned in Chapter 1, we assume that cloud-based applications are composed of

services, each has different QoS requirements and external environment changes (e.g.,

changes in workload). Particularly, we term a replica of a service as service-instance :

the jth instance of the ith cloud-based service is denoted as Sij. Unlike most of the

existing work, which focus on modelling for the entire application and VM, we aim to

create fine-grained QoS models for each service-instance.

It is worth noting that, apart from the co-located services on a VM, QoS interference

can also occur due to contention on the functionally dependent services. For instance, S11
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and S31 (both running on different PMs) can be both dependent on S21(e.g., a database

service). This implies that S11 and S31 incur QoS interference. However, we discovered

that in such case, the primitives of S31 tend to be insignificant in the QoS modelling of

S11 as the same information has already been expressed by the primitives of S21, which is

also part of the invocation. As a result, we consider the co-hosted services as the primary

causes of QoS interference.

4.2.2 The Cloud Primitives for Building Models

As mentioned in Chapter 2, the primitives in cloud serve as the fundamental inputs of a

QoS model. Without loss of generality, we decompose the notion of primitives into two

major domains: these are Control Primitive (CP) and Environmental Primitive

(EP). Selecting the relevant primitives for QoS is an crucial step in QoS modelling.

Specifically, all possible primitives inputs for modelling the QoS attributes of a service-

instance form a space, which we call possible relevant primitives space . This space

can be defined by:

Rule 4.1. A primitive belongs to the possible relevant primitives space for modelling the

QoS of Sab if it can be classified into one of the following groups:

1. It is a software control or environmental primitive of Sab.

2. It is a hardware control primitive of the VM that runs Sab.

3. In case of Sab has direct functional dependency2 on Scd, it is a software control or

environmental primitive of Scd.

4. In case of Sab has direct functional dependency on Scd, it is a hardware control

primitive of the VM that runs Scd.

2When the completion of a service Sab requires the invocation of another service Scd, then it is said
Sab has functional dependency on Scd. If no intermediate services are required in the invocation between
Sab and Scd, then it is said Sab has direct functional dependency on Scd.
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5. It is a software control or environmental primitive of Scd, which is co-located with

Sab on the same VM.

In Section 4.3.1, we will present the solution for selecting the relevant primitives from

such possible relevant primitives space.

Another important decision to mention is that, for each control primitive, we need to

decide on whether the upper/lower bound of control primitive. However, it is generally

impossible to guarantee that the configured value (e.g., CPU cap) can be fully utilised.

Such fact obfuscates the sensitivity of QoS to its primitives as using the configuration

values to model QoS would take those idle proportions of provisions into account. As

a result, using configuration values as inputs is ill-suited in our case. To cope with this

issue, we apply the demand values of control primitives (e.g., real-time percentage usage

of CPU) as inputs, which better reveal QoS sensitivity. Moreover, modelling QoS with

demand values implies that our model is likely to determine the minimal requirement

of configurations for achieving certain QoS objectives. This will potentially improve the

elasticity of software configuration and hardware provision in cloud, when our modelling

approach is used in cloud management. It is worth noting that certain dimensions of

control primitives (e.g., thread) can be controlled for each service-instance individually,

whereas others (e.g., CPU and memory) are shared on a VM, in which case an identical

value would be used for modelling the QoS of all service-instances deployed on such VM.

Instead of using multiple metrics for each primitive and QoS, e.g., CPU percentage

and instructions-per-second for measuring CPU of a VM, we follow the state-of-the-art

assumption [90] that only one metric is used for each primitive and QoS in the modelling;

the proper metric can be chosen by the software/cloud engineers based on certain con-

straints in the cloud environment (e.g., whether it is supported by the hypervisor). We

leave the study of multidimensional metrics as future work.
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4.2.3 Generic QoS Model

To tackle the aforementioned challenges of QoS modelling in the cloud, we define a generic

QoS model. Formally, the model at the tth sampling interval is expressed as:

QoS ij
k (t) = f ij

k (SP ij
k (t), δ) (4.1)

where QoS ij
k (t) is the kth QoS attribute of Sij , and its value that used in the modelling

is represented by a given metric (e.g., mean Response Time) at t. f ij
k is the QoS function

for the kth QoS attribute of Sij , and it changes at runtime using learning algorithms,

as we will see in Section 4.3.2. δ refers to any other inputs (e.g., historical time-series

QoS points and tuning variables etc) required by the algorithm to train f ij
k apart from

the cloud primitives. We denote the input in (4.1) as the selected primitives matrix of

QoS ij
k (t) at t, formally depicted in (4.2):

SP ij
k (t) =


CP xy

a (t) · · · EPmn
b (t− 1) · · ·

...
. . .

...
. . .

CP xy
a (t− q + 1) · · · EPmn

b (t− q) · · ·

 (4.2)

This matrix contains the primitive inputs of QoS ij
k (t) which are dynamically selected

from the possible relevant primitives space for the QoS attributes of Sij , as we will see

in Section 4.3.1. More concretely, the column entries indicate the selected primitives

for the QoS. CP xy
a (t) denotes the ath control primitive of Sxy and EPmn

b (t − 1) means

the bth environmental primitive of Smn respectively. The actual values of CP xy
a (t) and

EPmn
b (t − 1) in the modelling are measured by given metrics (e.g., expected CPU %

usage and mean request rate) at t and t-1, respectively. q determines the number of

row entries, which indicates the use of how many historical time-series points of the

selected primitives as inputs. During our experiments in Section 4.4, we observed that
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the best value of q depends on the learning algorithm that trains f ; in particular, it is

better to set q as constant for certain algorithms (e.g., q=1 for ANN); however for the

others (e.g., ARMAX), we found that q should be determined during training via hill-

climbing optimisation, which starts with q=1, then automatically increase the number of

row entries one by one during training till the accuracy cannot be further improved. To

improve numeric stability, we normalised all data values to the range between 0 and 1

before they are used in the modelling.

It is easy to see that (4.1) and (4.2) provide generic and intuitive formulations for

modelling QoS in the cloud. Precisely, to model QoS ij
k (t) , the objective of our self-aware

and self-adaptive modelling approach consists of two-phases: (i) a primitives selection

phase that determines the content of SP ij
k (t) at runtime; and (ii) a QoS function training

phase that trains function f ij
k on-the-fly.

4.3 Designing Self-Aware QoS Modelling

To adaptively build fine-grained, self-aware and self-adaptive QoS models, we imple-

mented our modelling approach as decentralised and independent components. As shown

in Figure 4.2, the QoS modelling process is realised as decentralised feedback loops; in

particular, a dedicated component instance (CI) is attached to each VM, and it could be

deployed on the root domain of a PM (e.g., Dom0 of the hypervisor Xen [6]).

The QoS modelling component encapsulates three sub-components: Data Collector,

Primitives Selector and QoS Function Trainer. As we can see in Figure 4.2, the approach

is deployed using decentralised component instances, each of which is attached to a VM.

The supported QoS attributes and primitive types are provided by the cloud adminis-

trators. By leveraging on the cloud providers’ own measurement facilities provided at

SaaS, PaaS and IaaS layers, an instance of the component monitors the data of each

service-instance running on the VM; it also adaptively producing QoS models based on
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Figure 4.2: The Architecture for QoS Modelling in the Cloud.

this data. More precisely, the Data Collector continually senses QoS values, environmen-

tal primitives’ values and demand of control primitives from all service- instances on its

corresponding VM. It is also responsible for recording all historical data (step 1). The

data collectors may need to collect data from the external service-instances, which could

be on other VM/PM. This is because these external service-instances may be functionally

required by the service-instances running on the VM attached to data collectors. All

historical data is then passed to our Primitives Selector to determine which and when

primitives are correlated with a QoS (step 2). Once the relevant primitives are selected

for each QoS, the QoS Function Trainer can apply the data set to dynamically train how

these primitives correlate with QoS and produce the final QoS models, based on machine

learning algorithms (step 3). To capture dynamic sensitivity of QoS, the entire process

should be repeated periodically (step 1-4).

For our autoscaling framework, this is the QoS Modeller component as described in

Chapter 3. Being one of the three internal selves (i.e., QoS Modeller, Region Controller
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Table 4.1: The Mapping Between Self-Awareness Capabilities and the Sub-Components
for QoS Modelling in the Cloud.

Self-
Awareness
Capability

Component Description

Stimulus-
awareness

Primitives
Selector and
QoS Function
Trainer

Knowing how the QoS modeling process can be af-
fected by the features (e.g. workload) of QoS at-
tributes and their changes.

Interaction-
awareness

Primitives Se-
lector

Knowing how the QoS modelling process can be af-
fected by the possible QoS interference and resources
contention.

Time-
awareness

Primitives
Selector and
QoS Function
Trainer

Knowing how the QoS modelling process can be af-
fected by the historical data points and the overall
trends.

Goal-
awareness

QoS Function
Trainer

Knowing how the QoS modelling process can be af-
fected by the utility functions of QoS.

Self-
expression

Primitives
Selector and
QoS Function
Trainer

Self-adapting the expressions of its QoS models, in-
cluding the model inputs and function.

and Decision Maker), self-awareness in QoS Modeller is mainly concerned with know-

ing QoS sensitivity. Table 4.1 shows the mapping between the sub-components of QoS

Modeller and the self-awareness capabilities. In the following sections, we explain the

algorithms and techniques used to achieve self-awareness at the QoS modelling level.

4.3.1 Relevance Driven Selection of Cloud Primitives

As shown in (4.1) and (4.2), the first task for modelling QoS ij
k (t) is to explore which

primitives should be included as column entries in SP ij
k (t), and determine when is the

appropriate interval to consider these primitives. To quantify the relevance of a primitive

to the QoS, we have used Symmetric Uncertainty (SU), which is a fundamental concept

in information theory [130]. SU measures the degree of relevance between two time series
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variables by producing a value ranges from 0 to 1, where a greater value implies higher

relevance. At one extreme, the value between a QoS attribute and a primitive is 1 indi-

cating that all information of the primitive is correlated with the QoS (and vice versa).

At the other extreme, the value of 0 implies that changes in the primitive’s behaviour

are independent of that of the QoS (i.e., irrelevant primitive). Formally, the symmetric

uncertainty for discrete variables is calculated by:

U(X, Y ) =
2× I(X, Y )

H(X) +H(Y )
(4.3)

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)× p(y)
) (4.4)

H(X) = −
∑
x∈X

p(x) log(p(x)) (4.5)

where X and Y are two value vectors of time-series variables (e.g, a QoS attribute and

a primitive); x and y are one of these values. I(X, Y) shows the formula for mutual

information and H(X) expresses entropy (we have used 2 as the log base); p(x,y) is the

joint probability between two values and p(x) is the marginal probability of a value. In

the following, we call a primitive as relevant primitive to a QoS attribute if it results in

non-zero SU value to such QoS. It is worth noting that at this stage, we do not consider

the redundancy in the selected relevance primitives. This issues will be tackled specifically

in the next Chapter.

In the Primitives Selector component, we adopt the relevance driven technique to

determine the relevant primitives of a QoS attribute, the procedure is described as the

following: firstly, based on the sensed data, we calculate the symmetric uncertainty be-

tween the QoS attributes of a given service-instance and each of the primitives from the

corresponding possible relevant primitives space (as described in Rule 4.1). Secondly, we

update the corresponding selected primitives matrix by adding the primitives that result
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in nonzero SU value; while removing primitives that have zero value. To handle runtime

dynamics and uncertainty, the selected primitives matrix can be continually updated with

newly-measured data.

4.3.2 Sensitivity-aware Auto-Regressive Moving Average with

eXogenous inputs model

Recall from (4.1), once the SP ij
k (t) is defined by the primitives selector, our next goal of

QoS modelling is to determine how those primitives correlate with QoS ij
k (t) by dynami-

cally building the function f ij
k . To achieve such goal, we apply two alternative algorithms

in QoS function trainer. We have chosen the ARMAX [22] and the ANN [119] as repre-

sentative of the linear and nonlinear algorithms respectively. Given that they only model

the primitives that selected using our relevance driven technique, the final models are

termed Sensitivity-aware ARMAX (S-ARMAX) and Sensitivity-aware ANN (S-ANN) re-

spectively. The choice of ARMAX and ANN is driven by the fact that they are the most

commonly applied algorithm for QoS modeling in the cloud, and that they represent two

extreme groups of algorithms in machine learning: ARMAX is essentially linear regres-

sion, which is simple and fast; while ANN is capable to handle nonlinear correlation but

could lead to high complexity.

We have considered linear ARMAX [22] as one of the applied learning algorithm for

QoS function training. The resulted model of particularly fits our case because it is based

on continuous time series. The correlation between primitives and QoSs in our case is

unlikely to be linear, however, the behaviour of a service instance can be approximated

locally as a linear model [107]. We adopt ARMAX such that the output is the QoS;

inputs are historical QoS values and relevant primitives of the said QoS. Formally, based

on the generic QoS model and symmetric uncertainty, our Sensitivity-aware ARMAX
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(S-ARMAX) is defined as:

QoS ij
k (t) =

q∑
z=1

αz(t)×QoS ij
k (t− z) +

q∑
z=1

∑
a=1

βza(t)× CP xy
a (t+ 1− z)

+

q∑
z=1

∑
b=1

θzb(t)× EPmn
b (t− z)

(4.6)

subject to CP xy
a (t+ 1− z),EPmn

b (t− z) ∈ SP ij
k (t) (4.7)

where q is the number of order, αz (t), βza(t) and θzb(t) are the coefficients of corresponding

QoS values and relevant primitives at sampling interval t. The constraint ensures that

any primitives should be selected from SP ij
k (t).

We train the S-ARMAX model using linear Least Mean Square (LMS) approach [129],

and the number of order q is determined using hill-climbing algorithm that starts with

q=1, then automatically increase the number of row entries one by one during training

till it reaches good accuracy.

4.3.3 Sensitivity-Aware Artificial Neural Network

Artificial Neural Network (ANN) [119] is applied as the second algorithm to build our

function f ij
k . We chose ANN because it is capable for modelling complex nonlinear corre-

lations. In particular, we adopt ANN with one hidden layer. This is because we observed

in our experiments that using two or more hidden layers could exacerbate the problem of

local minima, which significantly increases the training time. More precisely, the ANN,

which we adopt is a single-output, feedforward and fully connected three layered network,

where the inputs are the relevant primitives determined by primitive selector and output

is the corresponding QoS. Sigmoid function is chosen as the activation function on each

neurone node. We found that the number of order q does not influence ANN’s accuracy
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significantly, therefore we simply set q as 1 (i.e., no time-series information is included).

Based on the generic QoS model and symmetric uncertainty, our Sensitivity-aware ANN

(S-ANN) model is expressed as:

...
...

CP11
1 (t)

EP11
1 (t-1)

CP xy
a (t)

EPmn
v (t-1)

H1

Hn

QoS ij
k (t)

Input

layer

Hidden

layer

Ouput

layer

subject to CP xy
a (t),EPmn

b (t− 1) ∈ SP ij
k (t) (4.8)

The constraint again ensures that any primitives should be selected from SP ij
k (t). ANN

model can be trained with arbitrary quality, which reveals the potential accuracy of the

model prediction. By model quality, we refer to the degree to which the model is fit with

respect to the training data. In this perspective, a good quality model means that the

fitness should not be too low or too high; otherwise, the model will suffer from under- and

over-fitting. To guarantee model quality, we define minimum and maximum thresholds

to represent the good enough quality of model. The resulting model should be re-trained

immediately if its quality is not good enough.

Similar to S-ARMAX, by the end of each interval, the weights in S-ANN can be
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retrained with the newly-measured and normalized data. To achieve this goal, we apply

the RPROP [115] as the actual training algorithm for the network. This is because

RPROP can efficiently reach ’good enough’ model quality. To avoid training forever, we

have defined a training time threshold such that if this threshold has been reached, the

training is concluded with the best ever model. We found that use q=1 (i.e., no time

series information) can produce the best result; and the right number of hidden neurons

is determined using hill-climbing algorithm during training till the accuracy cannot be

further improved.

4.4 Experiments and Evaluations

The primary intention of our experiments is to evaluate accuracy and effectiveness of

the proposed QoS modelling approach with respect to the scale of data. Specifically, we

compare the accuracy of the proposed S-ARMAX and S-ANN models with conventional

models in continuous time series. We also assess the sensitivity of our models to the size of

training data. Finally, we examine training efficiency by looking at the training overhead.

4.4.1 Experiments Setup

We conducted experiments on private cloud using a cluster of PMs, each of which has

Intel i7 2.8GHz Quad Cores and 4GB RAM. The PMs use Xen v3.0.3 [6] as the hypervisor

and the modelling process is running on Dom0. To eliminate the interference caused by

modelling, we allocated one CPU core and 1.2GB RAM to Dom0, which tends to be

sufficient. Our approach is implemented based on Encog [2] and Apache Mathematics

[1] using Java JDK 1.6. To simulate QoS interference caused by the VMs while not

exhausting resources, we run three co- hosted VMs on each PM; the remaining resources

are evenly allocated to the co-hosted VMs. All VMs run linux kernel v2.6.16.29.

Our experiments leverage on RUBiS [5], which is a cloud-based application consists of
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26 co-located software services using the eBay.com model. For simplicity, we have used

three RUBiS snapshots, each of which consists of a 2-tiers (i.e., application and database

tiers) based RUBiS application; the three RUBiS snapshots differ in terms of the database

volume size ranging from 1GB to 5GB data. Each RUBiS snapshot is deployed with a

software stack including Tomcat v6.0.28 and MySQL v3.23.58 on each co-hosted VM

of a master PM; and we have implemented sensors deployed on each service- instance

and VM for sending the online data to Data Collector. For each RUBiS snapshot on

the master PM, the application tier is replicated to all other servant PMs in the cloud;

these replicas are connected to the database on the master PM for handling any database

related requests. Finally, each of the three RUBiS snapshots and its replica are linked to

its dedicated load balancer. Three client emulators are used and they apply read/write

pattern to generate requests for each load balancer.

To simulate a realistic workload within the capacity of our testbed, we vary the number

of clients proportionally according to the FIFA98 workload [14], which is compressed in

the way that the fluctuation of a day in the trend corresponds to 200s in our case. This

setup can generate up to 400 parallel requests, we believe that such compression is realistic

and large enough to simulate QoS interference in cloud.

We apply two deployment strategies for the benchmark. The first strategy D1 assumes

that all services of the application are hosted on one VM. The second strategy D2 involves

two VMs for each application replica, where the database server and web/application

server are deployed on different VMs. To facilitate the dynamic deployment in the cloud,

we switch the deployment from D1 to D2 on the fly by live-migrating the database

service. To further verify our modelling approach under unusual workload changes, we

apply the biding workload pattern for D1 whereas the browsing pattern is used for D2.

The entire FIFA 98 workload trend is used for D1, and it is repeated again for D2. Due

to limited space, we only report on evaluation of the QoS models for one service-instance
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Table 4.2: The Examined QoS Attributes and Primitives.

QoS and Primitives Description

Output

Response Time (ms) The average leaped time between a service-
instance receives and replies a request.

Throughput (req/min) The average rate of completed requests.
Availability (%) The percentage of time that the average response

time above a threshold. (60 ms)

CP input
CPU (%) Observed average CPU utilisation of a VM.

Memory (MB) Observed average Memory utilisation of a VM.
Thread (no. of req) Observed maximum concurrent threads of a

service-instance. (a modified control knob of Tom-
cat’s maxThread property)

EP input Workload (req/min) Observed average request rate of a service-
instance.

of a concrete service named SearchItemByCategory.

4.4.2 QoS attributes and Cloud Primitives

For the simplicity of exposition, we report on a scenario, which considers the following

dimensions: three QoS attributes, two hardware control primitives, one software control

primitive and one environmental primitive, as listed in Table 4.2. Considering the fact

that there are 26 services in RUBiS benchmark, we need to produce 78 QoS models, each

of which can have at most 54 possible relevant primitives and thus this is a non-trivial

scale. Additionally, based on the real-life workload and benchmark, this setup sufficiently

provides us with valuable insight on the models’ behaviour when handling a large stream

of live data in complex and dynamic systems.

To sum up, there are three QoS models that need to be adaptively created for each

service-instance. The actual inputs to train and predict these three QoSs are the primitives

in their selected primitives matrix, which are adaptively determined by the Primitive

Selector and the used machine learning algorithms as explained in Section 4.3.2 and 4.3.3

at Appendix C. In the case of our experiments, the likely relevant primitives of each QoS
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would be selected from: CPU and memory demands of the web/application server VM;

CPU and memory demands of the database server VM (this is only available when switch

to D2 ); threads demands and workload for each of the 26 service-instances on the same

VM. To compare S-ANN and S-ARMAX, the QoS Function Trainer would simultaneously

produce two alternative models for each QoS.

4.4.3 Accuracy

To validate the correctness, we measure the accuracy of our QoS modelling approach on

the fly. The sampling interval is 30s with the total of 700 intervals. In particular, we

examine the accuracy of one interval ahead prediction. That is, by the end of interval t,

our approach trains QoS models based on historical data up to t-1 (t-1 for environmental

primitives), the resulting model predicts the QoS at t by using historical QoS values (for

S-ARMAX), the measured demands of control primitives up to current interval t and value

of environmental primitives up to interval t-1. For all predictions, the accuracy is assessed

via Symmetric Mean Average Percentage Error (SMAPE) [58], which is computed as:

SMAPE =
1

K

K∑
t=1

∣∣QoS ij
k (t)′ −QoS ij

k (t)
∣∣

QoS ij
k (t)′ + QoS ij

k (t)
(4.9)

where K is the total number of intervals, SP ij
k (t)’ denotes the measurement of the kth

QoS of Sij (t) at interval t whereas SP ij
k (t) denotes the prediction for the same QoS at

the same interval. It has been shown that SMAPE is intuitive, stable and more resilient

to outliers than the other metrics [100]. Notably, we regard zero value of QoS as invalid

measurement, because it only represent the fact that no one has requested a certain service

at a point in time.

To further evaluate the improvement to conventional semi-dynamic approaches, we

compare the accuracy of our S-ARMAX and S-ANN models against the conventional

ARMAX e.g., [141] and ANN e.g., [90] based models, which only consider limited and fixed
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Table 4.3: Comparative Summary of QoS Prediction Accuracy for A Service-Instance of
SearchItemByCategory. (the best is highlighted in bold)

QoS SMAPE of Prediction (%) RSD (%)
S-ANN C-ANN S-ARMAX C-ARMAX

per-
service

per-
app

per-
service

per-
app

Response Time 6.97 12.76 31.72 11.43 15.08 34.03 120.61
Throughput 11.14 16.88 35.28 7.99 13.22 37.82 86.41
Availability 0.96 0.38 1.36 0.01 0.01 1 2.24

hardware control primitives, such as the CPU and memory of the web/application server

VM. In addition, they do not cater for QoS interference. We denote these conventional

models as C-ARMAX and C-ANN. Given that these models rely on fixed number of

relevant primitives, their number of order and hidden neurones are fixed and are obtained

by examining given set of measured data (we discovered that in our case set q as 2 for

C-ARMAX and 18 hidden neurones for C-ANN could result in the best model). These

conventional models predict QoS on per-application basis (denoted as per-app), whereas

our models are per-service models. Thereby to eliminate noise caused by granularity, we

also compare our models with modified, per-service version of C-ARMAX and C-ANN.

To analyse the correlation between model accuracy and the variation of measured QoS

trend, we apply Relative Standard Deviation (RSD) to measure how fluctuation of the

QoS tends to be in a relative manner, such metric is calculated as: RSD = σ/µ, where σ

is the standard deviation and µ is the mean of all measured QoS values.

The accuracies of all the comparative models are summarised in Table 4.3. It clearly

indicates that our S-ANN reduces the error from 31.72% to 6.97% for response time;

from 35.28% to 11.14% for throughput and from 1.36% to 0.96% for availability, when

compared to per-application C-ANN model. In contrast to per-service C-ANN, the S-ANN

also reduces 5.79% error (12.76% to 6.97%) for response time and 5.74% error (16.88%

to 11.14%) for throughput. The only exception is that the S-ANN tends to produce
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0.58% (0.38% to 0.96%) higher error for availability. We believe that this is because the

RSD of availability is relatively small and thus the influence caused by dynamic QoS

sensitivity tends to be trivial, which could easily cause over-fitting. On the other hand,

our S-ARMAX is superior to both per-application and per-service C-ARMAX models. In

particular, S-ARMAX reduces the error from 34.03% to 11.43% for response time; from

37.82% to 7.99% for throughput and from 1% to 0.01% for availability, when compared

to the per-application C-ARMAX model. In contrast to per-service C-ARMAX, the S-

ARMAX also reduces 4.45% error (15.08% to 11.43%) for response time and 5.23% error

(13.22% to 7.99%) for throughput. The prediction error for availability remains the same.

To conclude, it is clear that both of our S-ANN and S-ARMAX offers better accuracy

than the C-ANN and C-ARMAX models.

An interesting discovery is that nonlinear model like S-ANN handles the dynamic

QoS sensitivity better when the fluctuation of measured QoS increases (e.g., for Response

Time and Throughput with high RSD), whereas the linear S-ARMAX produces less error

when such fluctuation decreases (e.g., for Availability with low RSD). This is a useful

conclusion as it implies that to better handle the dynamic QoS sensitivity, we shall also

adaptively determine the best techniques to train QoS function at runtime.

To provide more detailed view of accuracy when using the proposed modelling ap-

proach, Figures 4.3-4.5 illustrate the total of 616 valid measurements of the actual QoS

and predicated values produced by S-ANN and S-ARMAX. More precisely, Figure 4.3

demonstrates the trends for response time. Although the figure shows that error tends

to increase for some of the peak points, it is obvious that both models still produce good

prediction even for D1 (from interval 1 to 310), where the QoS trend highly fluctuates.

Similar observation occurs in Figure 4.4, which illustrates the trends for throughput. As

for the availability in Figure 4.5, we can observe that S-ARMAX is better than S-ANN

for D2. This is because training the ANN model with stable data (e.g., interval 1-174)
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Figure 4.3: Actual and Predicated Response Time.
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Figure 4.4: Actual and Predicated Throughput.
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Figure 4.5: Actual and Predicated Availability.

followed by sudden fluctuation (at interval 175) can easily cause over-fitting, which even-

tually influences the ANN’s prediction accuracy. Nevertheless, we can see that the S-ANN

is adaptive enough to correct itself; the prediction becomes better and more stable from

interval 230. On the other hand, S-ARMAX obtains perfect prediction fit for availability

in all the intervals.

4.4.4 Sensitivity of Accuracy to Training Data Size

To understand the sensitivity of model accuracy to the training data size, we divide all

the measured intervals into 70% as training data and the rest 30% as testing data. Both

S-ANN and S-ARMAX are trained based on a portion of the training data, ranging from

40% to 100%. As shown in Figure 4.6, it is evident that both models improve their

accuracy as the size of training data increase. In particular, S-ANN is less sensitive to

the training data size and produces acceptable accuracy even under limited data.

112



40.00% 60.00% 80.00% 100.00%
0

10

20

30

40

50

13
.8

6

12
.9

9

12
.1

7

11
.5

6

43
.7

3

32
.8

5

29
.0

3

27
.3

1

16
.2

8

13
.0

8

14
.7

12
.8

4

37
.0

7

23
.3

1

1
4

.1
1

13
.5

3

0.
7

7

0.
7

4

0.
4

8

0.
3

6

1.
2

9

1.
0

1

0.
6

7

0.
5

2

S-ANN-R
S-ARMAX-R
S-ANN-T
S-ARMAX-T
S-ANN-A
S-ARMAX-A

Precentage of Training Data Size

S
M

A
P

E
 (

%
) 

Figure 4.6: Sensitivity of Accuracy to Training Data Size.

4.4.5 Overhead

Finally, we examine the overhead to train our sensitivity-aware QoS models with all the

training data points. We observed that the time taken to calculate relevance driven

primitives selection is rather trivial in our case. From Figure 4.7, we can clearly see that

both models have training overhead less than 10s while S-ARMAX is relatively more

efficient in all cases as it has simpler structure. Therefore, the training overhead of our

models is acceptable within the sampling interval of 30s.

4.5 Discussion of Limitations

It is clear that the experiment results have demonstrated the effectiveness of our QoS

modelling approach. However, as we observed during the experiment process, there are

still limitations for the modelling approach to become fully self-aware and further improve

its self-adaptivity. These limitations are discussed as below:
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Figure 4.7: Overhead of QoS Modelling.

• Since the proposed QoS modelling approach in this chapter is specifically tailor for

handling the QoS interference at the service level, it has not considered the QoS

interference caused by co-hosted VM on a PM. This limitation can restrict the

application of the approach in scenarios where resource contention becomes a major

issue at the virtulization level.

• We have leveraged on relevance driven technique for selecting the primitives as model

inputs. However, we subsequently observed that this technique constantly results

in a large number of selected primitives in the QoS model. This will result in an

overcomplicated model, which can cause the following problems: firstly, it renders

the decision for selecting the right elastic autoscaling decision difficult when using

the model. Secondly, certain learning algorithms can easily over-fit the model and

thus affect its accuracy.

• As we have discussed in Section 4.4.3, the experimental results suggest that dif-
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ferent learning algorithms tend to perform quite differently depending on the QoS

fluctuation trends and primitives combination. This result indicates that given the

generality of the proposed QoS model, the single learning algorithm is limited as we

can not determine which algorithm to use without expensive and extensive analysis.

In addition, even such process is performed, the offline analysis can still become

invalid at runtime.

In the next chapter, we propose an improved QoS modelling approach with the aim

to overcome these limitations and the related challenges.

4.6 Conclusion

In this chapter, we have proposed a novel self-aware and self-adaptive QoS modelling

approach grounded on symmetric uncertainty and two machine learning algorithms, AR-

MAX and ANN to reach two formulations of the QoS model. These techniques provide

the foundations to enable self-awareness for QoS modelling in the cloud. In this way, the

approach can capture the dynamics of QoS sensitivity by determining which, when and

how primitives correlate with QoS at runtime. In addition, we cater for QoS granularity,

QoS sensitivity and QoS interferences. Our approach considers fine-grained model as well

as both software and hardware control primitives. By mapping to the self-awareness capa-

bilities, we have implemented our approach as a independent component that adaptively

creates fine-grained QoS models. We have experimentally evaluated our approach with

respect to accuracy, sensitivity to data size and efficiency using the RUBiS benchmark

and the FIFA 1998 workload trends. The results reveal that our approach is effective

and produces better accuracy as when compared with the conventional models in various

cases. Experiments also imply that the proposed S-ANN tends to be more accurate than

S-ARMAX, when the fluctuation of QoS increases. On the other hand, S-ARMAX tends

to be better when the QoS trends is relatively stable.
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As mentioned in section 4.5, there are challenges remaining for QoS modelling in the

cloud, in the next chapter, we report on an improved approach and demonstrate the

necessity and effectiveness of such improvement.
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Chapter 5

Improved QoS Modelling using

Hybrid and Adaptive

Multi-Learners

5.1 Introduction

Modelling QoS for cloud-based services is an important and necessary, yet challenging

task. As mentioned in Chapter 2 and 4, existing static (i.e., analytical and simulation

based) or semi-dynamic modelling approach (i.e., those that rely on manual and static

primitives selection) lack in their ability to handle dynamics and uncertainty in the cloud.

In particular, they tend to be limited in dealing with QoS interference, primitives selection

and QoS function training. As one of the key contributions of this thesis, in Chapter 4, we

have proposed and discussed a self-aware, self-adaptive and fine-grained QoS modelling

approach in the cloud. This solution and many other existing modelling approaches,

e.g., [90] [107], are called single learner-based as they apply single primitives selection

technique and learning algorithm to model QoS. We have also demonstrated that the

proposed approach in Chapter 4 is able to achieve better accuracy in contrast to existing
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semi-dynamic modelings. However, our subsequent investigations have revealed several

limitations of such approach. Firstly, it ignores the QoS interference caused by VMs

co-hosted on the same PM [116]. Secondly, the single learner-based approach can easily

result in a QoS model with large numbers of inputs due to its over-sensitive nature when

handling QoS interference. This will unnecessarily complicate the model and downgrade

the prediction accuracy. Thirdly, we have observed that different learning algorithms (e.g.,

ANN and ARMAX) can be suitable only for certain QoS trends; however, a single learner-

based approach requires the engineers to predetermine the suitable learning algorithm.

This can entail manual and extensive investigation rendering it as an expensive process.

Moreover, a predetermined approach does not cater for unexpected or envisioned changes

in QoS at runtime.

5.1.1 Motivations and Challenges

As mentioned in Chapter 4, the improvements of the QoS modelling approach have been

motivated by our subsequent investigation from the experiments. Specifically, the moti-

vations and the new challenges can be discussed as the following:

Dynamic and Uncertain QoS Interference at both service- and VM-level:

We have classified QoS interference into two categories: the co-located service interference

and co-hosted VM interference. The former is an inherent issue from the traditional

cluster computing, where multiple applications/services running on the same operating

system can suffer contention on the shared memory/cache, and therefore cause interference

[50]. This is also true for multi-core systems [112]. The latter, on the other hand, is a

significant unique problem in cloud computing, where virtualization has been used as the

basis. This is because in such scenario, certain aspects of the underlying infrastructure

are shared amongst the co-hosted VMs on a machine (e.g., last level cache of CPU and

memory bandwidth), henceforth it can result in contention and create the chances for
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interference, as evident by many recent work [116] [91] [86] [99]. Given that it can be

extremely difficult to completely eliminate QoS interference or it can be too expensive to

do so [116], it is crucial to consider and handle the interference when modelling QoS in the

cloud. In particular, it is important to consider the QoS interference at both service- and

VM level as they influence QoS in a dynamic and joint manner. Here, the challenge lies in

the difficulty to dynamically incorporate information about interference in the modelling,

especially when the QoS interference is dynamic and uncertain in nature—it is difficult to

know when contention would occur and what the degree of such contention is. However,

as we have extensively surveyed in Chapter 2, existing work either consider co-hosted VM

interference only (e.g., [116]) or completely ignore QoS interference (e.g., [90]) relying on

the assumption that interference would never occur, which is unrealistic. As a result,

modelling QoS without considering QoS interference at both service and VM level can

downgrade the accuracy and/or lead to incorrect autoscaling decision.

Dynamic and Uncertain Primitives Selection: In Chapter 4, we have already

discussed the dynamic and uncertain nature of primitives selection. We have proposed a

relevance driven technique to cope with this problem. Given that the selected inputs have

a great impact to the model accuracy (as we will show in Section 5.4), it is important to

select a right set of primitives. In particular, too limited inputs may not provide enough

information of relevance to the QoS (i.e., the information that drives the changes in QoS),

thus the accuracy may be insufficient. In addition, limited inputs of a model implies that

it is not intuitive and can not be used in many scenarios. On the other hand, too many

inputs can generate noise in the modelling (as we observed in the previously proposed

relevance driven technique), because it introduces irrelevant information and large re-

dundancy in the inputs (i.e., the same information has been provided by more than one

selected primitives, thus it becomes noise), this will downgrade the model accuracy [110].

Moreover, it can over-complicate the model, causing difficulties in its application. Though
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some machine learning algorithms are proven be be resistant to noise e.g., [132], we believe

that the benefits gained from primitives selection is vast, e.g., improved accuracy, more

intuitive model and faster modelling time. The challenge here is how to dynamically select

the most significant set of primitives as inputs, which provides good model accuracy

and adequate complexity. In addition, incorporating the information of QoS interference

makes this challenge even more difficult, because the control knobs and environmental

conditions of neighbours services and VMs can become possible inputs in the model.

Nevertheless, as we have extensively surveyed in Chapter 2, existing static and semi-

dynamic approaches for QoS modelling in the cloud rely on fixed and manual analysis to

select the primitives as inputs, which are often offline. It is easy to see that a thoroughly

offline and manual analysis would require extensive and careful human intervention by

taking every permutation of the primitives into account. Therefore, one trick that has

been widely applied is to reduce the possible primitives space based on empirical observa-

tions and domain specific assumptions, e.g., most work [116] [90] consider only hardware

resources. However, this may mislead the QoS modelling and downgrade accuracy as it

can ignore some highly relevant features, e.g., the software configurations, which can inter-

play with the hardware provision to influence QoS; these are often the primary causes of

QoS violations [26] [139] [99]. In addition, ignoring QoS interference can result in inaccu-

rate models. Even though the offline and manual selection is achieved at a good accuracy,

the runtime dynamics and uncertainties can become a problem as there is no guarantee

that the selected primitives are the best for the entire service life time. Until recently,

few techniques [133] [26], including our relevance driven technique presented in Chapter

4, have been proposed for self-adaptive primitives selection in the cloud. However, they

implicitly tackle redundancy and regard each primitive equally in the selection. We refer

these techniques as single-learner based in the remaining of this thesis. In Section 5.6, we

will show why these single-learner based techniques tend to be limited in accuracy.
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Dynamic and Uncertain Suitability of Learning Algorithms: As we have

surveyed in Chapter 2, the application of machine learning algorithms for QoS function

training in many existing approaches, including the approach presented in Chapter 4,

are mostly single-learner based, providing that they rely on a single learning algorithm.

Nevertheless, as we mentioned in Chapter 4, we observed that a single learning algorithm

can be suitable only for certain QoS trends, and such suitability is dynamic and uncertain

in nature. Consequently, a significant drawback of these approaches is that, for any given

scenarios, they require the engineers to predetermine the suitable learning algorithm. This

can entail manual and intensive investigation rendering it as an expensive process. More-

over, a predetermined algorithm does not cater for unexpected or envisioned changes in

QoS at runtime. Now, the challenge becomes how to efficiently and dynamically determine

the best learning algorithm for different scenarios.

All these challenges exhibit high complexity, runtime dynamics and uncertainties,

which urge the need for a fully dynamic, accurate and self-adaptive QoS modelling ap-

proach that continually evolves itself in the cloud.

5.1.2 Contributions

In this chapter, we propose an improved QoS modelling approach to overcome the above

limitations and challenges using hybrid and adaptive multi-learners, which are the key

enablers of realising better self-awareness for QoS modelling in the cloud. The approach

is capable to dynamically select only the most significant set of primitives as model inputs;

while improving the model accuracy. Furthermore, it adaptively selects the most suitable

learning algorithm for training the QoS function given a QoS trend and inputs combina-

tion. In addition to ANN [119] and ARMAX [22], we further introduce RT [117] as one of

the candidate learning algorithm. This is because the tree structure of RT [117] distincts

itself from the other two learning algorithms, hence introducing extra variability in the
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model selection process. All these techniques improve the self-awareness capabilities of

the QoS modelling approach. The experiment results reveal that our approach is overall

more accurate, more stable and reduce the error quicker than the other approaches; while

generating acceptable overhead.

5.2 Partitioning of Cloud Primitives

We adopt the same cloud system model, assumptions and the generic QoS model as

described in Chapter 4. To improve accuracy and prevent noises, selecting the right

primitives as inputs is critical for QoS modelling in the cloud. However, the difficulty

is that the primitive inputs, which are relevant and useful for modelling QoS in the

cloud tend to be dynamic. In such context, possible inputs of a QoS model can be the

primitives that tend to directly influence the QoS (e.g., the threads of the corresponding

service-instance); it can also include the primitives that belong to the co-located service-

instances and the co-hosted VMs; As discussed in Chapter 4, all possible primitives inputs

for modelling the QoS attributes of a service-instance form a space, which we call possible

relevant primitives space . To incorporate the QoS interference caused by co-hosted

VMs, we additionally extend the possible relevance primitives space for each service. The

extension is described as follow:

Rule 5.1. A primitive belongs to the possible relevant primitives space for modelling the

QoS of Sab if it can be classified into one of the following groups:

1. It is a software control or environmental primitive of Sab.

2. It is a hardware control primitive of the VM that runs Sab.

3. In case of Sab has direct functional dependency on Scd, it is a software control or

environmental primitive of Scd.
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4. In case of Sab has direct functional dependency on Scd, it is a hardware control

primitive of the VM that runs Scd.

5. It is a software control or environmental primitive of Scd, which is co-located with

Sab on the same VM.

6. It is a hardware control primitive of the VM, which is co-hosted with the VM that

runs Sab on the same PM.

Rule 5.1 distincts from Rule 4.1 in the fact that it contains an additional condition

6, which aims to capture the information about QoS interference at the VM level. The

problem here is how to select on-the-fly a right subset of primitives from the space as

the inputs of QoS models. Instead of selecting only the relevant primitives as mentioned

in Chapter 4, we intend to select the most significant primitives. The aim is to improve

the model’s accuracy by taking both relevance and redundancy of the primitives into

account. In Section 5.4, we will present detailed analysis and solution for selecting the

right primitives.

5.3 Improving Architecture for QoS Modelling in the

Cloud

Given that we introduce more requirements for self-awareness in the QoS modelling pro-

cess, the architecture is required to be improved and the related new components needs

to be mapped to self-awareness capabilities. As shown in Figure 5.1, the approach is

again realised as middleware using autonomic architecture with a feedback loop. The

service-instances running on the VMs of a PM are managed by a dedicated Middleware

Instance (MI), which is attached to the root domain (e.g., Dom0 [6]) of this PM. Each

MI is self-adaptive as the feedback loop runs continually to keep the models updated.
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Figure 5.1: The Improved QoS Modelling Architecture.

Our approach is designed for online scenarios; the only offline preparation is to define

the current service-instances, their QoS and classification of the primitives in the spaces

(i.e., using Rule 5.1). This preparation can be easily done by the cloud engineers and it

should be updated accordingly if changes occur. The approach can be also used offline in

situations where conducting offline modelling in advance can be beneficial to the online

models. Within the feedback loop, Data Collector continually monitors and stores sample-

values of QoS and primitives from the service-instances/VMs of a PM, and those from the

other PMs in the presence of functional dependency. This can be achieved by accessing

the cloud sensors or log files. It is worth noting that the modelling interval can be longer

than the sampling interval; that is to say, the frequency of data collection do not need to

be the same as the frequency of modelling, in which case the sampled data can be stored

in a history database and retrieved when needed.

Upon each modelling interval, for each QoS attribute of a service-instance, all historical

data is then passed to the primitives selection phase for determining which and when
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Table 5.1: The Mapping Between the Additional Meta-Self-Awareness Capability and the
Sub-Components.

Self-Awareness Ca-
pability

Component Description

Meta-self-
awareness

QoS Function
Trainer

Knowing the suitability of candidate learning
algorithms.

primitives correlate with QoS at runtime (step 1). Here, we have used two learners to

select primitives from two sub-spaces as motivated by our analysis in Section 5.4. At step

2, the selected sets of primitives are combined and sent to the QoS function training phase,

where multiple learners are used to model how the primitives correlate with QoS online

(step 3). At step 4, each QoS attribute is associated with a bucket of models produced by

candidate learners and an evaluation function; in addition, the weights in the evaluation

function will be updated. This bucket can be then used by, e.g., a Decision Maker for

performing prediction at any time (step 5). Upon prediction when given a set of inputs,

the evaluation function is used to select the best model in the bucket (see Section 5.5).

As one of the extensions to the architecture described in Chapter 4, we incorporat-

ing meta-self-awareness in the QoS modelling process. Such self-awareness capability is

particularly helpful for reasoning at the meta-level, i.e., to determine which is the best

learning algorithm. In addition to Table 5.1, the mapping between the sub-components

of the improved QoS Modeller and the meta-self-awareness capability is demonstrated in

Table 5.1.

5.4 Primitives Selection in the Cloud

Recall from (4.1) and (4.2),to dynamically model QoS ij
k (t)at runtime, the first challenge

is to determine which and when the underlying primitives should be included as column

entries in SP ij
k (t) for the QoS modelling.
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One straightforward solution to the primitives selection problem is to search the best

set of primitives using a given learning algorithm that guarantee to produce the best ac-

curacy for the said algorithm; this is regarded as the wrapper approach [80]. Nevertheless,

given that the learning algorithm needs to be run many times during the selection process,

it is clear that such approach can introduce large overheads in terms of both resource and

latency. As a result, the wrapper approach is not well-fit for online QoS modelling in the

cloud. In this work, we focus on an alternative approach that is more efficient and capable

to select primitives independent of the learning algorithms, namely the filter [80].

We define two main objectives for the primitives selection, namely, selecting relevant

primitives and selecting useful primitives from the possible relevant primitives space. The

former try to select all relevant primitives, which can be easily achieved; while the later

aims to further select an even better set of primitives that has a right balance between

relevance and redundancy, which improves the model accuracy.

In this section, we present a set of experimental analysis on the relevance and redun-

dancy of selected cloud primitives in relation to model accuracy. Subsequently, driven by

the observations gained from the conducted analysis, we propose a self-aware, self-adaptive

and online solution for primitives selection, namely hybrid dual-learners.

5.4.1 Quantifying Relevance and Redundancy

To quantify the relevance of a primitive to the QoS and the redundancy between a pair of

primitives, we have used Symmetric Uncertainty (SU), which is a fundamental concept in

information theory [130]. As presented in Chapter 4, by using (4.3), it is straightforward

to measure the relevance of a primitive to QoS. As for redundancy, we consider it as the

relevance between a pair of primitives, which can be also easily quantified via (4.3). It

is known that SU can provide correct information about the relative effects of relevance

and redundancy for a pair of individual primitives on the model accuracy [110].
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Nevertheless, the single SU value and pair-wised comparison are insufficient for select-

ing useful primitives as they cannot consider both relevance and redundancy simultane-

ously in the selection. In addition, it cannot properly quantify the effects of combinatorial

relevance and redundancy to model accuracy for a whole set of selected relevant primi-

tives. This means given two sets of selected relevant primitives, such comparison cannot

determine which set will produce better model accuracy during the selection. Our prob-

lem requires a measurement that copes with those issues. As a result, we need to study

and select useful primitives by comparing the cumulative representation of relevance and

redundancy for any possible sets of selected relevant primitives.

There can be two forms of cumulative representation: firstly we can consider multi-

variable density function for a given set of selected relevant primitives, in which case (4.3)

would be changed into the following formula [110]:

U(X1,X2...Xn, Y ) =
2× I(X1,X2...Xn, Y )

H(X1,X2...Xn) +H(Y )
, Xn ∈ S (5.1)

where [X1 ,X2 ...Xn ] denotes vectors of n different primitives that has been selected; and

S denotes the set of selected primitives. (5.1) expresses both relevance and redundancy

as they can be handled by the multivariable density function. However, this method

has some serious drawbacks: (i) the number of online data samples can be insufficient

for correctly calculating the probability and (ii) the multivariate density estimation often

involves computing the inverse of the high-dimensional covariance matrix, which is com-

putationally expensive and thus it is an ill-suited solution in our case. Alternatively, we

can compute the cumulative SU values of relevance and redundancy. By cumulative SU

values, we refer to the cumulative combination (i.e., total or average) of the single SU

values for the primitives in a given set of selected relevant primitives [110]. An example

of relevance is shown below:
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Relevance of a selected set =
n∑

X∈S

U(X, Y ) (5.2)

This cumulative combination involves a bi-variable density function only and thus it is

more appropriate for filtering at runtime. In addition, it is highly intuitive and the nature

of cumulative combination implies its light computational efforts. The cumulative repre-

sentation for redundancy can be similarly applied. In this work, we call these cumulative

representations as cumulative relevance and cumulative redundancy.

Recall that in selecting useful primitives, we aim to improve the model accuracy by

balancing the relevance and redundancy of selected primitives. With this in mind, it is

easy to see that even if we incrementally select (add) the relevant primitives one at a time,

the validity and usefulness of cumulative relevance and redundancy rely on the following

assumption (in the next subsection, we will experimentally verify this assumption):

Assumption 5.1. For QoS modelling in the cloud, the model accuracy, represented by er-

ror, is negative to the difference between cumulative relevance and redundancy if the cu-

mulative relevance is bigger (i.e., the bigger the difference, the smaller error); or being

positive to such difference if the cumulative redundancy is bigger (i.e., the bigger the dif-

ference, the bigger error). �

Indeed, if this assumption does not hold, it means that the cumulative SU values

cannot correctly differentiate and quantify the effects of some relevant primitives to the

model accuracy, and this will significantly mislead the selection process.

In the following, we report on a set of experimental analysis, which are about how

the relevance and redundancy of selected primitives affect the model accuracy for QoS

modelling in the cloud.
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Figure 5.2: The Relevance of Different Cloud Primitives to Response Time for the Exam-
pled Service-Instance.

5.4.2 Relevance and Redundancy Analysis on Primitives Selec-

tion

To study the correlation of selected primitives to the accuracy for modelling QoS in the

cloud, we have conducted several analysis on the relevance and redundancy of selected

primitives by means of experiments (see Section 5.6 for the detailed setup). In particular,

we have carefully analysed the relevance between possible primitives and QoS from the

experiments—we first select the relevant primitives and then we rank them based on

their relevance to the QoS. We found that the only constant observation across many

QoS attributes and service-instances is that for each feature dimension (i.e., thread, CPU,

Memory and Workload), certain primitives are more relevant to the QoS than all or most of

the others. As an example, Figure 5.2 shows the relevance (measured by (3)) for Response

Time of a service-instance for different feature dimensions, calculated by averaging the

values from all 350 intervals in one run. We discovered that the more relevant primitives

are the ones that can directly influence the corresponding service (dark bars), e.g., the
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thread of the service and CPU of the VM; on the other hand, the less relevant primitives

are the ones that can only interfere the service and its QoS via contention (light bars), e.g.,

the thread of co-located service and CPU of co-hosted VM. Such observation indicates

that the former is more important to the QoS than the latter as QoS interference can only

occur when the contention is quite significant [116]. This fact motivates us to partition

the possible relevant primitives spaces into two sub-spaces, namely the direct primitives

space and the indirect primitives space. By leveraging the classifications in Rule 5.1, the

former is defined by:

Rule 5.2. A primitive belongs to the direct primitives space for modelling the QoS of Sab

if it is in group 1,2,3 or 4 from Rule 5.1. �

It is clear to see that the direct primitive space contains primitives that can directly

influence the QoS, which means they tend to provide different aspects of information.

On the other hand, the indirect primitives space contains information about the QoS

interference. Consequently, the indirect primitive can be defined as:

Rule 5.3. A primitive belongs to the indirect primitives space for modelling the QoS of

Sab if it is in group 5 or 6 in Rule 5.1. �

It is worth noting that the indirect primitives space should generally be larger than the

direct primitives space as it is sensitive to the number of co-located service and co-hosted

VMs, which can be expended largely in the cloud. It is possible that both direct and

indirect primitives space have irrelevant primitives, but as mentioned, these can be easily

eliminated.

We have experimentally verified the validity of Assumption 5.1 for direct and indi-

rect primitives spaces, as specified in Appendix B. Particularly, we have observed that

Assumption 5.1 is true for intra-indirect primitives space. However, for inter- direct and

indirect spaces, this assumption does not hold; for intra-indirect primitives space, this
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assumption is invalid either. We believe the reason being is that Assumption 5.1 can be

easily violated when there are certain primitives providing different aspects of informa-

tion to the QoS (e.g., different dimensions of primitives and QoS interference). However,

the assumption is effective for the primitives purely contain information about QoS in-

terference, i.e., those in the indirect primitives space. Therefore, a single-learner based

technique (i.e., considering all primitives equally) tends to be insufficient for the primi-

tives selection as it will mislead the selection process. We have also found that the best

accuracy is achieved by the combination of direct and indirect primitives, which prove the

importance of considering QoS interference in the modelling.

All these facts urge the need for a self-aware, self-adaptive and online primitives se-

lection for modelling QoS in the cloud, which we address in this chapter. Given that

the cumulative relevance and redundancy can mislead the selection when Assumption

5.1 does not hold and the fact that it is very difficult to efficiently handle the selection

without cumulative representations, we have decided to avoid the misleading selection

by partitioning the space. To better tackle the problem of relevance and redundancy in

primitives selection, we intend to partition the primitives that provide different aspects

of information to the QoS into sub-spaces, and select the useful primitives from each

sub-space independently using cumulative relevance and redundancy.

5.4.3 The Hybrid Dual-Learners for Primitives Selection

To adaptively and dynamically select primitives as the model inputs online, we design a

runtime filtering mechanism based on symmetric uncertainty, which has the advantage

to assess the effects of selected primitives on model accuracy without actually training a

model. Based on the analysis in Section 5.4.2, we use multi-learners in order to avoid the

aforementioned issues caused by single-learner based technique. In particular, we partition

the primitives that provide different aspects of information on the QoS into sub-spaces;
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this will result in k+1 partitions, where k is equal to the number of primitives in the

direct primitives space; while the remaining one partition refers to the indirect primitive

space. The objective is to select useful primitives from each sub-space independently

using dedicated learners and then produce an ensemble results as the selected inputs for

modelling. By doing so, we aim to produce a model with adequate model complexity and

improved accuracy.

Inspired by [110], for each sub-space, we formalise a maximal Relevance Minimal

Redundancy (mRMR) learner using cumulative relevance and redundancy. The objective

of this learner is to continually select the primitives that maximise:

max Φ(S, Y ), s .t . U(X, Y ) > 0, X ∈ S (5.3)

where X corresponds to the value vector of a primitive and Y to the value vector of QoS

attribute. S denotes the associated sub-space. Mathematically, the objective function Φ

can have four possible variations, depends on whether we use total or average to represent

cumulative SU values; and whether we apply multiplicative or additive formulation to

represent the difference between cumulative relevance and redundancy. Specifically, we

obtain several variations of the objective function in (5.3):
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Total and multiplicative:

∑n
X∈S U(X, Y )

1 +
∑

X,X′∈S U(X,X ′)
(5.4)

Average and multiplicative:

∑n
X∈S U(X, Y )× (n− 1)

n2 − n+ 2×
∑

X,X′∈S U(X,X ′)
(5.5)

Total and additive:

n∑
X∈S

U(X, Y )−
∑

X,X′∈S

U(X,X ′) (5.6)

Average and additive:

∑n
X∈S U(X, Y )

n
−

2×
∑

X,X′∈S U(X,X ′)

n2 − n
(5.7)

where X’ is the value vector of another primitive. n is the number of primitives, which

has been already selected; U is the function of symmetric uncertainty in (4.3). It is clear

to see that the constraint filters all the irrelevant primitives and this can be done easily. In

this work, we apply incremental random search to optimise these functions for simplicity;

however, it can be easily replaced by more sophisticated algorithms (e.g., hill-climbing,

integer optimization and evolutionary algorithm). In Section 5.6, we will experimentally

compare these variations.

Given that the Assumption 5.1 does not hold in indirect primitive space, we apply

dedicated mRMR learner for each sub-space independently. However, because there is

only one primitive exist for each k sub-space, the objective here is equivalent to select the

relevant primitives from all k sub-spaces, therefore these sub-spaces can be merged into
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one and the multiple mRMR learners can be simplified to the following single maximal

Relevance (mR) learner. The objective of this learner is to continually select the primitives

that maximise:

max Ψ(D, Y ),Ψ =
n∑

X∈D

U(X, Y ), s .t .U(X, Y ) > 0 (5.8)

where D denote the associated direct primitive space all the notations are the same as

(6). Again, the constraint filters all the irrelevant primitives.

As for indirect primitives space, we use a mRMR learner for this sub-space, given that

the Assumption 5.1 is true and the indirect primitive space tends to provide the same

aspect of information to the QoS.

Eventually, we only need to partition the possible relevance primitives space into two

sub-spaces, each of which employs learners with different primitives selection techniques

(i.e., mR learner and mRMR learner). The final results are combined to form the selected

useful primitives. We call this as the hybrid dual-learners technique.

Algorithm 1 Hybrid dual-learners for primitives selection
Inputs:
given the value vector Y of a QoS attribute QoS ij

k , the associated direct primitives
space D and indirect primitives space ID
Declare:
Cdirect - the collection of selected direct primitives
Cindirect - the collection of selected indirect primitives
Outputs:
the column entries of the selected primitives matrix SP ij

k (t)

1: start primitives selection
2: Cdirect := ∅, Cindirect := ∅,
3: Cdirect := argmax Ψ(D, Y ) =

∑n
X∈D U(X, Y ), s .t .U(X, Y ) > 0

4: Cindirect := argmax Φ(S ,Y ) =
∑n

X∈S U(X,Y )

1+
∑

X,X′∈S U(X,X′)
if (5.4) is applied.

5: end primitives selection

An algorithmic description of the primitives selection phase is illustrated in Algorithm
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1. We will show (in Section 5.6) that the proposed hybrid dual-learners technique leads

to better accuracy as when compared to other single-learner based and manual solutions.

5.5 QoS Function Training in the Cloud

Recall from (4.1), once the primitives in SP ij
k (t) are selected, our next goal for QoS

modelling is to determine how those primitives correlate with QoS ij
k (t)in the QoS function

f ij
k (t).

Existing work has considered variety of learning algorithms for QoS function training,

ranging from simple linear model [107] to complex nonlinear ones [90]. These algorithms

are self-adaptive and dynamic in nature thus they are capable to deal with dynamic and

uncertain magnitude of primitives in the correlation. In this section and by means of

experiments, we study the accuracy of the most widely used single learning algorithms

(i.e., ANN, ARMAX and RT.) for QoS modelling in the cloud. We assess the accuracy of

the learning algorithms over four different QoS attributes—Response Time, Throughput,

Reliability and Availability (see Section 5.6.1 for their detailed definitions). Finally, we

present a self-aware, self-adaptive and online solution for QoS function training, namely

adaptive multi-learners, to address the issues discovered.

5.5.1 Sensitivity-Aware Regression Tree

To increase variability in the QoS function training, Regression Tree (RT) [117] is the

final learning algorithm we have considered in this thesis. A possible structure of RT has

been shown as below:
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RT is a learning algorithm that maps the relation of primitives and QoS into a tree-

like structure, in which leaves represent class labels and branches express conjunctions of

features to reach these labels. The tree is trained using the Classification and Regression

Trees (CART) technique [24] and we found that use q=1 (i.e., no time series information)

can produce the optimal results. By using the primitives selected from the primitives

selection phase as model inputs and continually updating the RT models online, we achieve

a sensitivity-aware RT, which is similar to our design for the sensitivity-aware ANN and

ARMAX.

5.5.2 Suitability Analysis of Learning Algorithms On QoS Func-

tion Training

For simplicity of exposition, we illustrate the results for a service-instance for the three

learning algorithms over the four QoS attributes. We have used the variation in 5.4 for
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primitives selection. To better interpret the result with respect to different trends of

QoS attributes, we apply Relative Standard Deviation (RSD) to measure the fluctuation

of the QoS in a relative manner, calculated as: RSD = σ/µ, where σ is the standard

deviation and µ is the mean of all measured QoS values. We can observe from Table

5.2 that the RSD value of the QoS attribute can be sorted by the following ascending

order: Availability, Reliability, Throughput to Response Time; this means the trend

of Response Time being the most fluctuated one. At the other extreme, the trend of

Availability being the most stable one. As shown in Figure 5.3, we can clearly see that the

accuracy achieved by a learning algorithm differs significantly from case to case—ANN is

the best for Response Time and Throughput while the ARMAX is the best for Reliability

and Availability. In particular, the results of ARMAX reduces the error to 0.03% for

Reliability and Availability; while ANN tends to be significantly better than ARMAX for

Response Time and RT for Throughput. Beside, even though RT perform the worst for

most of the cases, it can still largely reduce the error in contrast to ARMAX at the case

of Response Time.

An interesting discovery is that, if we interpret the results from Figure 5.3 in conjunc-

tion to the RSD of different QoS attributes, we can see that the ANN tends to perform

better than ARMAX on Throughput and Response Time where the fluctuations of trend

are relatively large; and this improvement tends to increase from Throughput to Response

when the trend becomes more fluctuated. On the other hand, ARMAX tends to produce

better accuracy than ANN on Reliability and Availability, where the fluctuations of trend

are relatively small; and this improvement tends to increase from Reliability to Availabil-

ity when the trend becomes more stable. These observations reveal that nonlinear model

like ANN can better handle the dynamic and uncertain magnitude of primitives in the

correlation leading to better accuracy when the fluctuation of the QoS increases, whereas

the linear ARMAX produces less error as such fluctuation decreases.
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Table 5.2: The Relative Standard Deviation of QoS for A Service-Instance.

QoS Attribute RSD

Response Time 4.197056205058521
Throughput 0.6629050477197764
Reliability 0.011793827516559515
Availability 0.010681646537192316
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Figure 5.3: The Model Accuracy of Each Learning Algorithm on Difference QoS At-
tributes.

All these experimental results suggest that the learning algorithms perform quite dif-

ferently depending on the QoS fluctuation trends and primitives combination; henceforth,

we cannot reach a conclusion that a certain algorithm is generally the best learning al-

gorithm for QoS modelling in the cloud. This indicates that given the generality of the

proposed QoS model, the single learner is limited as it is difficult to determine which

learning algorithm to use without expensive and intensive analysis. In addition, even

when such process is performed, the offline analysis can still become invalid at runtime.

Therefore, it is desirable to build a self-adaptive mechanism that not only able to adap-

tively model the magnitude of selected primitives to the QoS, but also dynamically select

the suitable algorithm based on the runtime trend of a QoS attribute.
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5.5.3 The Adaptive Multi-Learners for QoS Function Training

Give the fact that most machine learning algorithms are self-adaptive and dynamic in na-

ture, the crucial challenge here is how to adaptively determine the best learning algorithm

for QoS function training. To this end, we propose an adaptive multi-learners technique

for updating QoS function on the fly and predicting the QoS values. The technique has

two main processes, namely training and prediction. At the training process, we simulta-

neously apply different learners to train the same QoS function , but each of the learners

uses different learning algorithm to build a model. At the prediction process, we evaluate

these learning algorithms by comparing the resulted models within the bucket on the fly;

the model of the best learning algorithm is used to predict QoS.

One of the most critical design decisions is to determine the evaluation function that

compares the models produced by candidate learners. The basic method would be based

on global mean error of all historical samples. However as shown by Kundu et al. [90],

given a set of primitive values as inputs, the most accurate model using these inputs might

not be the one that has the best global error. This is because the accuracy of a model

can be sensitive to the local construct of given input values, including the variation of

possible combination, scale and granularity, etc. As a result, our evaluation function aims

to compare both the local error of a given inputs set produced by a model and the global

error of the said model. In this work, we have used SMAPE for measuring the error, but

other metrics can be replaced easily.

An algorithmic description of the training process has been shown in Algorithm 2.

At the training process, as the collected online data increases, we continually train two

QoS models for each learner (line 2-5): (i) A main-model that uses 100% of the collected

online data; (ii) A sub-model, which is trained based on 70% of the total collected data.

The sub-model is used to test local and global error for its main-model of a learner. In

particular, it tests the QoS prediction error against the remaining 30% testing data—the
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Algorithm 2 Training process in adaptive multi-learners
Inputs:
given the column entries of SP ij

k (t) from Algorithm 1 and a set of candidate learning
algorithms
Declare:〈
Mmain , Msub , L

〉
- a vector of main-model, sub-model and the corresponding local error

pattern
bucket - a collection of model vectors
Outputs:
a bucket of model vectors for a QoS attribute QoS ij

k

1: for each candidate learning algorithm simultaneously do
2: find the optimal number of row entries, i.e., the value of q in 4.2 (Chapter 4), for

SP ij
k (t) if it has not been predefined for this learning algorithm

3: train main-model Mmain and sub-model Msub based on the required inputs
defend by SP ij

k (t)
4: test the sub-model for building local error pattern L
5: bucket := bucket ∪

〈
Mmain , Msub , L

〉
6: end for

split of training and testing data follows standard machine learning approach for testing

generalisation errors. These generalisation errors and their corresponding samples (i.e.,

the observed values of all selected primitives and QoS at each interval) within the testing

data serve as the local error patterns of the main-model. Finally, the main-model, sub-

model and local error patterns are put in a bucket.

An algorithmic description of the prediction process has been shown in Algorithm 3.

The prediction process is triggered when there is need to perform prediction. In particular,

the best main-model in the bucket is used as the final model to predict QoS. To calculate

the local error of a main-model, we leverage on the prediction error of its sub-model for

each sample within the testing data, as recorded in the local error patterns (line 3-9).

When given a set of inputs (i.e., new values of the selected primitives) for predicting QoS,

the local error of a main-model is determined by extrapolating the similarity between the

given set of inputs and each sample from local error patterns; the error of the most similar

sample is used as the local error (line 4-7). To this end, we apply symmetric uncertainty
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Algorithm 3 Prediction process in adaptive multi-learners
Inputs:
given a set of inputs P and the bucket from Algorithm 2
Declare:
S - the current sample
Sselected - the most similar sample to P
d - the distance between P and the current sample
dsmallest - the smallest distance between P and a sample
Elocal - the local error of the current main-model
Eglobal - the global error of the current main-model
E - the final error of the current main-model
Esmallest - the smallest final error of a main-model
Mselected - the selected main-model for prediction
Outputs:
the predicted QoS value of QoS ij

k

1: start prediction
2: for each

〈
Mmain , Msub , L

〉
in the bucket of QoS ij

k (t) do
3: for each sample S in the local error pattern L of Msub do
4: calculate distance d between P and S using 5.10
5: if dsmallest >d then
6: dsmallest := d, Sselected := S
7: end if
8: end for
9: get the error of Sselected as the local error Elocal of Mmain

10: get the global error Eglobal of Mmain

11: evaluate final error E of Mmain using 5.11
12: if Esmallest >E then
13: Esmallest := E, Mselected := Mmain

14: end if
15: end for
16: predict(P) using the selected main-model Mselected

17: end prediction
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based Euclidean Distance to measure the similarity. As shown in (5.10), d is the distance

of the given set of inputs against a sample in the local error patterns.

d =

√∑
x∈X

(SU x × (px − p′x)2) (5.10)

px and p′xrespectively denote the value of xth selected primitive in the given set of inputs

and the value of the same primitive in a sample from local error patterns. SUx is the

symmetric uncertainty value between the xth primitive and the QoS attribute. The sample

results in the smallest d is the one that we are seeking, then its corresponding error is

used as the local error of the main-model (line 9).

On the other hand, the global error of a main-model is the mean errors of all samples

within the 30% testing data produced by its sub-model (line 10). Finally, the evaluation

function selects the best main-model for a given set of inputs by examining on both the

local and global error of all main-models in the bucket, as formally depicted in (13) (line

11-14).

Ei = α× Ei
local + β × Ei

global (5.11)

where Ei , Ei
local and Ei

global denote the final, local and global error of the ith main-model

respectively. α and β are two heuristics expressing the relative importance of local and

global errors. We have set the initial value of α and β as 0.1, which means the local and

global error are equally important from the beginning. The selected main-model and its

learning algorithm for a given inputs is the one that has the smallest (line 16).

To capture the right weight of local and global errors, α and β are updated via 5.12
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when new data is collected.

α = α + ∆α, β = β + ∆β

s .t .

∆α = eα=0,β=1 − eα=1,β=0 if eα=1,β=0 < eα=0,β=1

∆β = eα=1,β=0 − eα=0,β=1 if eα=1,β=0 > eα=0,β=1

(5.12)

Specifically, eα=1 ,β=0 is the prediction error of new data produced by the selected

main-model when α = 1 and β = 0. Similarly, eα=0 ,β=1 is the error produced by the

selected main-model when α = 0 and β = 1. In this way, the error that is more useful

in the selection will gradually gain more importance. This updating process has been

illustrated in Algorithm 4.

Algorithm 4 Update α and β in the evaluation function
Inputs:
newly measured values vector Psample and QoS value y for a QoS attribute of selected
primitives QoS ij

k

1: start update when newly data is available
2: predict(Psample) using Algorithm 3 when α = 1, β = 0
3: predict(Psample) using Algorithm 3 when α = 0, β = 1
4: calculate the errors of the predicted values from step 2 and 3 against y
5: calculate ∆α and ∆β using (5.12)
6: update α and β using (5.12)
7: end update

As mentioned in Section 5.5, we employ three different learning algorithms (i.e., AR-

MAX, ANN and RT) in the adaptive multi-learners. Our technique is flexible as new

algorithms can be added or old algorithms can be removed/substituted if needed.
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5.6 Experiments and Evaluations

To evaluate our modelling approach, we experimentally benchmark our results against

other single-learner and manual techniques. Specifically, the primary intention of the

experiments is to validate the approach against the following criteria:

• Accuracy: By comparing with various other state-of-the-art modelling approaches,

we intend to examine whether the hybrid dual-learners and the adaptive multi-

learners can achieve better accuracy.

• Stability: We intend to assess the stability of the accuracy achieved by our ap-

proach under different scenarios, i.e., different QoS attributes and learning algo-

rithms, in contrast to the other competitors.

• Sensitivity of accuracy to online data size: We examine the sensitivity of

accuracy of the proposed approach to the available online data size. The purpose is

to evaluate how quick the model accuracy changes with respect to the increase in

data size.

• Overhead: We intend to evaluate the overhead of our approach in terms of the la-

tency in the modelling, for both the primitives selection phase and the QoS function

training phase.

In addition to the assessment of accuracy under different QoS attributes and/or learn-

ing algorithms using SMAPE, we also intend to examine the overall accuracy and stability

for all the considered scenarios. However, given the assumption that the scenarios are

equally important, simply calculate the average or sum of all SMAPE can mislead the

results. This is because different QoS attributes produce different scale of the prediction

error, e.g., the error for predicting Throughput tends to be much larger than that for
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Reliability; therefore a technique/learning algorithm that performs better for Through-

put will more likely to dominate the overall results. To cope with this issue, we use the

summation of normalised SMAPE to illustrate the overall accuracy of a competitor, as

shown below:

Overall Accuracy = 100×
n∑
i

ei
ei,mean

(5.13)

whereby ei is the SMAPE of a competitor for the ith QoS attribute and/or learning

algorithm and ei ,mean is the mean SMAPE of all competitors under such scenario; n

is the total number of QoS attribute and/or learning algorithm. In this way, the errors

under each scenario are formatted into the same scale where smaller value indicates better

overall accuracy. Similarly, we assess the stability of a competitor via the summation of

normalised distance to the best competitor under each scenario, formally calculated by:

Stability = 100×
n∑
i

ei − ei,best
ei,worst − ei,best

(5.14)

where ei ,best and ei ,worst are the SMAPE produced by the best and worst competitor

respectively, under the ith QoS attribute and/or learning algorithm. The remaining nota-

tions are the same as 5.13. Again, smaller value indicates better stability across different

scenarios.

The experiments setup is similar to what have been described in 4.4.1 of Chapter 4.

In addition, we have considered two types of read/write pattern: a read-intensive pattern

where read to write ratio is around 9:1; and a write-intensive one, i.e., read to write ratio

is around 1:1.

5.6.1 The QoS Attributes, Primitives and Evaluation Procedure

The concrete QoS attributes and primitives depend on scenarios. For the simplicity

of exposition, we have selected commonly used QoS attributes and primitives in the
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Table 5.3: The Examined QoS Attributes and Primitives.

QoS and Primitives Description

Output

Response Time (ms) The average leap time between a service-instance
receives and replies a request.

Throughput (req/min) The average rate of completed requests.
Reliability (%) The percentage of requests that being completed

less than a threshold. (30 ms)
Availability (%) The percentage of time that the average response

time above a threshold. (60 ms)

CP input
CPU (%) Observed average CPU utilisation of a VM.

Memory (MB) Observed average Memory utilisation of a VM.
Thread (no. of req) Observed maximum concurrent threads of a

service-instance. (a modified control knob of Tom-
cat’s maxThread property)

EP input Workload (req/min) Observed average request rate of a service-
instance.

evaluation, but it is worth noting that our approach is not limited to these dimensions.

As listed in Table 5.3, these QoS attributes and primitives are per-service except for CPU

and memory as they are shared on a VM. For each service-instance running on a VM of

the master PM, a QoS model can at most has 4 direct primitives (i.e., CPU, memory,

thread and workload of the said service-instance); and 54 indirect primitives, i.e., 2 (thread

and workload)×25 (co-located service-instances)+4 (CPU and memory of another two co-

hosted VMs). This combination gives us a maximum of 58 possible relevant primitives

for each service-instance.

We evaluate the prediction accuracy on the fly; and for each experiment run, we

examine the accuracy of one interval ahead prediction: by the end of interval t, the

QoS models are trained based on historical data up to t-1 (up to t-2 for environmental

primitives), and then we use the observed primitives values at t (at t-1 for environmental

primitives) to predict the QoS value at t, which is finally used to compared with the actual

QoS value via SMAPE. The sampling and modelling intervals are both 120 secs with the

total of 500 intervals, where the first 150 intervals use a static and stable workload trend
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aiming at providing some essential data for the modelling; whereas the rear 350 intervals

follow the FIFA98 trend. This setup can generate one new sample per interval for updating

the model. For all accuracy related experiments, we examine the SMAPE for the rear

350 out of 500 intervals in one experiment run; we calculate the mean accuracy of all

service-instances on one VM of the master PM and the reported results are computed by

averaging 10 runs.

5.6.2 Accuracy of Hybrid Dual-Learners for Primitives Selec-

tion

To assess the effectiveness of our hybrid dual-learners technique for primitives selection,

we use various criteria, including accuracy, stability and model complexity. To start with,

we first compare the four variations of our hybrid dual-learners technique, these are:

• HYBRID-V1 - using (5.8) for mR and (5.4) for mRMR.

• HYBRID-V2 - using (5.8) for mR and (5.5) for mRMR.

• HYBRID-V3 - using (5.8) for mR and (5.6) for mRMR.

• HYBRID-V4 - using (5.8) for mR and (5.7) for mRMR.

We report the results by following the evaluation procedure described in Section 5.6.1.

For all cases, we apply three widely used learning algorithms (i.e., ANN, ARMAX and

RT) for QoS function training on all the QoS attributes.

Figure 5.4, 5.5 and 5.6 illustrate the results for the overall accuracy, stability and model

complexity under two different workload patterns. We can see that for both workload

patterns, HYBRID-V1 tends to produce the best accuracy overall, but it has marginal

difference to HYBRID-V3 on the write-intensive pattern. As for stability, it is clear that

the HYBRID-V1 achieves the best results. We observed that all four variations produce
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Figure 5.4: The Overall Accuracy for Each Variation of the Hybrid Dual-Learners Tech-
nique.
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Figure 5.5: The Stability for Each Variation of the Hybrid Dual-Learners Technique.
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Figure 5.6: The Complexity for Each Variation of the Hybrid Dual-Learners Technique.
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Table 5.4: The Detailed SMAPE (%) Results of Hybrid Variations for Primitives Selection.
(the best is highlighted in bold)

Write-intensive workload

Hybrid-v1 Hybrid-v2 Hybrid-v3 Hybrid-v4

Response Time
ANN 12.28 12.8 12.81 12.48

ARMAX 29.61 30.56 29.84 36.59
RT 16.31 18.1 16.39 16.37

Throughput
ANN 11.93 12.29 12.67 13.59

ARMAX 13.35 13.55 14.02 15.12
RT 21.89 21.8 21.14 24.2

Reliability
ANN 0.21 0.21 0.21 0.2

ARMAX 0.03 0.03 0.03 0.03
RT 0.28 0.26 0.29 0.27

Availability
ANN 0.37 0.36 0.36 0.43

ARMAX 0.03 0.02 0.03 0.03
RT 0.43 0.45 0.41 0.55

Read-intensive workload

Response Time
ANN 13.51 15.44 15.14 15.35

ARMAX 44.85 45.62 44.36 45.68
RT 17.42 21.19 20.26 21.58

Throughput
ANN 13.75 15.73 15.84 15.55

ARMAX 15.02 17.91 17.99 17.9
RT 22.07 24.74 25.87 26.22

Reliability
ANN 0.32 0.42 0.44 0.44

ARMAX 0.03 0.04 0.05 0.04
RT 0.38 0.3 0.43 0.33

Availability
ANN 0.61 0.69 0.7 0.7

ARMAX 0.05 0.06 0.06 0.06
RT 0.68 0.64 0.63 0.65

the same model complexity. Table 5.4 shows the detailed accuracy results under each

of the 12 scenarios. For both workload patterns, HYBRID-V1 produces the best results

for most of the cases on Response Time and Throughput; whereas for other two QoS

attributes, the best variation tends to be different.

Next, we use HYBRID-V1 (we refer to as HYBRID for simplicity), as the representa-

tive of our hybrid dual-learner technique, to compare against various other self-adaptive
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and online selection techniques that are categorised as single-learner based; and the man-

ual selection technique that has been widely used in existing static and semi-dynamic QoS

modelling approaches (e.g., [90] [107]). They are explained as the following:

• HYBRID - using (5.8) for mR and (5.4) for mRMR.

• SINGLE-MR - using (5.8) for mR.

• SINGLE-MRMR - using (5.4) for mRMR.

• MANUAL - fixed and offline selection that statically uses certain primitives (CPU

and memory in our case) as inputs e.g., [90] [107] - we modified the model from

per-VM to per-service.

• SINGLE-MR-DIRECT - using (5.8) for mR and consider direct primitives only.

Figure 5.7 shows the overall accuracy for the write-intensive and read-intensive work-

load patterns respectively. From Figure 5.7a, we can see that our HYBRID produces the

best accuracy overall. Specifically, in contrast to those single-learner based techniques,

HYBRID has better overall accuracy than that of SINGLE-MR-DIRECT because it con-

siders extra information about interference in the modelling, which tends to be important

for improving accuracy. In addition, it is also overall more accurate than SINGLE-MR and

SINGLE-MRMR, because it is capable to select useful primitives based on both relevance

and redundancy while still prevent misleading the selection process. This is achieved

by partitioning the possible relevance primitives space. We have also observed that, a

carefully designed self-aware, self-adaptive and online selection technique can generally

lead to better accuracy than the manual selection; however an inappropriate one (i.e., the

SINGLE-MR) might make the accuracy worse off.

As for the read-intensive pattern (Figure 5.7b), SINGLE-MR and SINGLE-MRMR

are less accurate than SINGLE-MR-DIRECT; they are even much worse than the manual
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Figure 5.7: The Overall Accuracy for Each Primitives Selection Technique.
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Figure 5.8: The Stability for Each Primitives Selection Technique.
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Figure 5.9: The Complexity for Each Primitives Selection Technique.

technique. This implies that the rich redundancy and the misleading selection cause more

serious issues as when compared to write-intensive pattern. For our HYBRID technique,

we can note that it again achieves the best accuracy overall, which is a consistent result

on both workload patterns.

Figure 5.8 shows the stability of the techniques; it is easy to see that our HYBRID
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Table 5.5: The Detailed SMAPE (%) Results of Techniques for Primitives Selection. (the
best is highlighted in bold)

Write-intensive workload

Hybrid Single-mR Single-mRMR Manual Single-mR-
direct

Response Time
ANN 12.28 16.12 13.03 17.8 12.92

ARMAX 29.61 37.56 29.77 33.81 32.36
RT 16.31 19.74 15.4 19.25 17.91

Throughput
ANN 11.93 13.45 16.82 14.26 12.55

ARMAX 13.35 15.29 17.53 14.17 13.6
RT 21.89 23.52 23.17 19.88 19.94

Reliability
ANN 0.21 0.55 0.35 0.16 0.17

ARMAX 0.03 0.05 0.02 0.02 0.02
RT 0.28 0.29 0.24 0.35 0.37

Availability
ANN 0.37 0.39 0.34 0.36 0.36

ARMAX 0.03 0.04 0.02 0.03 0.02
RT 0.43 0.43 0.43 0.55 0.56

Read-intensive workload

Response Time
ANN 13.51 15.9 21.84 30.73 15.49

ARMAX 44.85 51.44 56.47 53.46 48.52
RT 17.42 20.21 20.01 21.09 20.73

Throughput
ANN 13.75 16.59 30.18 18.56 15.75

ARMAX 15.02 17.04 17.31 17.87 17.66
RT 22.07 24.4 30.79 25.81 24.51

Reliability
ANN 0.32 1.2 0.45 0.36 0.55

ARMAX 0.03 0.04 0.05 0.06 0.06
RT 0.38 0.59 0.57 0.37 0.45

Availability
ANN 0.61 0.78 0.65 0.68 0.72

ARMAX 0.05 0.07 0.03 0.05 0.05
RT 0.68 0.64 1.32 0.83 0.77

technique produces the best result for both workload patterns, meaning that it is the most

robust one under different scenarios. As for complexity (Figure 5.9), the HYBRID can be

slightly more complex than the others, except for SINGLE-MR. However, the benefit here

is that the model’s overall accuracy is better and more stable than others with respect to

the QoS attributes and the learning algorithms.

Table 5.5 shows the detailed accuracy results for each of the 12 scenarios. Again, we
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can see that for both workload patterns, the HYBRID produces the best results for most of

the cases on Response Time and Throughput, which are highly fluctuate; but the best for

Reliability and Availability tend to vary. This is because the Reliability and Availability

trends tend to fluctuate less than that of Response Time and Throughput. Therefore, the

sensitivity of certain learning algorithms to the number of inputs are amplified; this can

easily lead to over-fitting when the model complexity increases, which will significantly

influence the model accuracy. However for Reliability and Availability, the differences

of accuracy between HYBRID and the best one ranges from 0.01% to 0.05%, which is

marginal as when compared to the improvement that HYBRID offers.

According to all these results, we can conclude that although HYBRID does not

constantly produce the best accuracy for every learning algorithms and QoS attributes, it

tends to produce the best overall accuracy; it is also the most robust and stable technique

in the presence of variability introduced by different learning algorithms and QoS trends.

In particular, HYBRID provides better accuracy when QoS fluctuates, while leaving the

model complexity adequate. It is also worth noting that having a self-aware, self-adaptive

and online primitives selection process promotes numerous other benefits, e.g., reduce the

needs for complex human analysis and can be easily adapted to many learning algorithms

etc.

5.6.3 Accuracy of Adaptive Multi-Learners for QoS Function

Training

To evaluate our adaptive multi-learners technique (denoted as ADAPTIVE) for QoS func-

tion training, we follow the evaluation procedure described in Section 5.6.1. For different

QoS attributes, we compare the accuracy and stability of ADAPTIVE with that of the

other online learning algorithms that assume single learner (i.e., ANN, ARMAX and RT),

which has been widely studied in existing semi-dynamic QoS modelling approaches e.g.,
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[90] [107]. In all the cases, we have used HYBRID for primitives selection.

Figure 5.10 and 5.11 show the overall accuracy and stability results under the two

considered workload patterns. We can clearly see that ADAPTIVE produces the best

accuracy overall for both workload patterns. It is also the most stable and robust against

different QoS attributes. Detailed accuracy results for each of the 4 scenarios has been

shown on Table 5.6. Here, we observe similar results on both workload patterns: for

Response Time and Throughput, the ANN is the best learning algorithm in contrast to

ARMAX and RT; We can see that ADAPTIVE is also much better than ARMAX and

RT, but being slightly worse than ANN. These results indicate that although the ADAP-

TIVE might occasionally produce false positive/negative for selecting the best learning

algorithm, it is still able to produce very closed accuracy to the best learning algorithm

for a QoS attribute. In cases of Reliability and Availability, we can see that the ADAP-

TIVE is able to produce the same prediction error as the best learning algorithm, which

is ARMAX. This result means that, through the inclusion of meta-self-awareness, the

ADAPTIVE successfully determines the best learning algorithm along the QoS trend.

In summary, we can note that although the algorithms behave differently depends on

different QoS trends, our adaptive technique can still continually select the suited one

to predict QoS and result in good accuracy; it is also the most stable on different QoS

trends. Moreover, our self-aware, self-adaptive and online solution eliminates the need

of heavy human intervention for identifying the suitable learning algorithm, and hence

reduce the errors that can be introduced by human analysis.

5.6.4 Detailed Accuracy

Figure 5.12 and 5.13 illustrate examples of the actual and predicted QoS values for all the

considered QoS attributes. Due to limited space, we have used an instance of the service

named SearchItemByCategory as the example. We can see that the prediction of the

154



0

100

200

300

400

500

600

700

192.8

474.9

285.2

646.2

O
ve

ra
l A

cc
ur

ac
y

Adaptive
ANN
ARMAX
RT

(a) The Write-Intensive Workload.

0

100

200

300

400

500

600

700

179.01

488.89

322.83

609.27

O
ve

ra
l A

cc
ur

a
cy

Adaptive
ANN
ARMAX
RT

(b) The Read-Intensive Workload.

Figure 5.10: The Accuracy for Each Learning Algorithm.
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Figure 5.11: The Stability for Each Learning Algorithm.

Table 5.6: The Detailed SMAPE (%) Results of Learning Algorithms for QoS Function
Training. (the best is highlighted in bold)

Write-intensive workload

Adaptive ANN ARMAX RT

Response Time 13.72 12.28 29.61 16.31
Throughput 12.72 11.93 13.35 21.89
Reliability 0.03 0.21 0.03 0.28
Availability 0.03 0.37 0.03 0.43

Read-intensive workload

Response Time 13.82 13.51 44.85 17.42
Throughput 14.16 13.75 15.02 22.07
Reliability 0.03 0.32 0.03 0.38
Availability 0.05 0.61 0.05 0.68
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hybrid and adaptive multi-learners approach diverts from the actual QoS scale at some

early peak points, e.g., the 30th interval for throughput. We believe that such inaccuracy

is due to the applied FIFA98 trend has limited seasonality, thus the modelling approach

can frequently encounter ’new behaviours’ of the services at peak points, especially during

the early stages of fluctuated trend. However, the figure clearly shows that the multi-

learners approach is able to quickly evolve itself and detect most of the change-points in

the remaining trend, given that the subsequent predictions are good even for the peak

and trough.

5.6.5 Sensitivity of Accuracy to Online Data Size

Next, we evaluate the sensitivity of accuracy to the online data size for our approach. This

sensitivity expresses how quick accuracy changes as the available data samples increase.

Specifically, we split the data size of the entire 350 intervals into the following portions

based on the order of time series: 20%, 40%, 60%, 80% and 100%. In the following,

we report on the results for the write-intensive pattern. Similar observation has been

registered for the read-intensive workload pattern.

Figure 5.14 shows the sensitivity of accuracy to data size for the HYBRID and other

single learner-based and manual selection techniques. We note that all primitives selection

techniques lead to better accuracy as the data size increases, given the fact that all selected

primitives are more or less relevant to the QoS. In most of the cases, the sensitivity of

model accuracy to data size has been similar for all the primitives selection techniques. In

addition, the comparative accuracy under limited data do not differ much as to what had

been reported in Section 5.6.2. However we found that in certain cases (e.g, Figure 5.14a

and 5.14e), particularly for fluctuated QoS trends, the accuracy produced by HYBRID

clearly has the greatest sensitivity to data size; or being more sensitive than most of

the other selection techniques. We also discovered that in these cases, HYBRID tends
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(b) ANN for Throughput.
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(c) ANN for Reliability.
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(d) ANN for Availability.
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(e) ARMAX for Response Time.
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(f) ARMAX for Throughput.
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(g) ARMAX for Reliability.
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(h) ARMAX for Availability.
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(i) RT for Response Time.
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(j) RT for Throughput.
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(k) RT for Reliability.
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(l) RT for Availability.

Figure 5.14: Sensitivity of Model Accuracy to Online Data Size for Each Primitives
Selection Technique. The y-axis is SMAPE (%); x-axis is the online data size (%).
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(c) Reliability.
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Figure 5.15: Sensitivity of Model Accuracy to Online Data Size for Each Learning Algo-
rithm. The y-axis is SMAPE (%); x-axis is the online data size (%).

to produce better or similar accuracy in contrast to the other selection techniques, even

when the data size is limited. These observations imply that, in contrast to the other

approaches, HYBRID can still further improve the accuracy quicker as the data samples

increase, while maintaining relatively less or similar error under limited data size.

Figure 5.15 illustrates the sensitivity of accuracy to data size for the ADAPTIVE and

other single learner-based learning algorithms. Again, all learning algorithms gradually

improve on accuracy as the data size increase. The sensitivity of ADAPTIVE has been

similar to most of the others for Response Time and Reliability (i.e., Figure 5.15a and

5.15c). However, for Throughput and Availability (i.e., Figure 5.15b and 5.15d), our

ADAPTIVE and the best learning algorithms (i.e., ANN and ARMAX) tends to improve

accuracy slightly quicker than the others while maintaining relatively less error under

limited data size. We can also observe that, in contrast to the corresponding best single

learning algorithm for each QoS attribute, the accuracy of our ADAPTIVE has the same

or similar sensitivity to the online data size.

5.6.6 Overhead

To assess the overhead of our approach, we compare the latency of HYBRID to other

single learner-based techniques, which has been considered in the experiments for prim-

itives selection; we also examine the latency of ADAPTIVE to that of ANN, ARMAX
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Figure 5.16: Modelling Overhead for Primitives Selection on Write-Intensive Workload
(top) and Read-Intensive Workload (bottom).
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Figure 5.17: Modelling Overhead for QoS Function Training on Write-Intensive Workload
(top) and Read-Intensive Workload (bottom).
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and RT for QoS function training. Because the latency can be varied depends on the

characteristics of the service and data size, we have used an instance of the service named

SearchItemByCategory as the example given that it exhibits the most fluctuated

workload. The experiments are performed using the rear 10 out of 500 intervals and we

report on the average results of all QoS attributes over 10 runs.

Figure 5.16 shows the performance overhead for different primitives selection tech-

niques. We can see that under both workload patterns, the HYBRID (0.68s and 0.65s) has

relatively bigger overhead as when compared to SINGLE-MR and SINGLE-MR-DIRECT;

but it is smaller to that of SINGLE-MRMR. We have observed that this is due to the

majority of overhead is caused by the optimisation process in 5.3, which is not part of

the process in SINGLE-MR and SINGLE-MR-DIRECT. However, such extra overhead of

HYBRID is generally acceptable as it is still less than 1 sec. For the case of QoS function

training, Figure 5.17 illustrates the best and worst cases for all learning algorithms. In

particular, for both patterns, ANN generally produces bigger overhead as when compared

to ARMAX and RT. This is because the ANN is fundamentally more complex than the

other two. For both the best and worst cases, the ADAPTIVE has relatively similar over-

head to that of ANN; this is expected as the ADAPTIVE needs to wait for the completion

of all simultaneously running learning algorithms before determine the best one to use.

In conclusion, the overhead of our modelling approach is acceptable under the sampling

and modelling interval of 120s, and thus it is efficient enough to be performed online.

5.7 Conclusion

In this chapter, we proposed an improved approach for QoS modelling in the cloud. To

tackle the dynamics and uncertainties related to QoS sensitivity and interference, we use

hybrid dual-learners technique for primitives selection. We have presented a detailed

study on how the relevance and redundancy of selected primitives influences the model
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accuracy, which drives our designs. On the other hand, we have showed that different

learning algorithms perform significantly different depends on QoS attributes and their

fluctuations. Therefore, we use an adaptive multi-Learners technique for QoS function

training. In this way, we aim to dynamically select the best learning algorithms at runtime.

All these dual- and multi-learners, as well as the related techniques are the foundations

to enable better self-awareness for QoS modelling in the cloud. The experiment results

suggest that, in contrast to state-of-the-art QoS modelings, our approach produces better

overall accuracy while having acceptable overhead; and it is more stable against the

variability introduced by different scenarios. More importantly, the proposed approach

eliminates the need for heavy human intervention, which can be complex and error-prone.

The implication of QoS modelling and its dynamic analysis to intelligent adaptation in

the cloud are vast: the model can assist autonomic software agents in predicting causes of

probable risks leading to QoS violations; reasoning about appropriate mitigation strategies

and/or even planning for optimal QoS design and online adaptation strategies. Moreover,

it can assist problems related to QoS self-management, self-adaptation, resource utilisation

and elastic autoscaling.

We have explored the proposed algorithms and techniques for realising self-awareness

in the QoS Modeller component. In the following chapters, we will qualitatively and

quantitatively demonstrate how the resulted QoS models can be used in the other two

important logical aspects (i.e., determining granularity of control and trade-off decision

making ) of autoscaling in the cloud; and what are the benefits of these models.
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Chapter 6

Self-Aware and Self-Adaptive

Approach for Determining

Granularity of Control in Cloud

Autoscaling

6.1 Introduction

An effective autoscaling system should be global-benefit optimised, with an attempt to

optimise both QoS and the required rental cost. The optimal benefit refer to the optimum

performance of all QoS attributes with minimal costs for a cloud-based service. If each

service in a cloud reaches its optimal benefit, then cloud is said to reach globally-optimal

benefit. Achieve globally-optimal benefit in the cloud leads to a win-win situation: the

owners of cloud-based services gain better QoS with less rental cost. On the other hand,

the cloud provider could better utilise resources and earns better reputation.

The global benefit objective consists of various QoS and cost objectives. In this thesis,

we use objectives to refer to various QoS and cost objectives of a cloud-based service.
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When making autoscaling decisions in the cloud, the objectives, which we aim to optimise

for, can be either conflicting or harmonic due to the presence of overlapping sensitivity

(e.g., being sensitive to at least one identical primitive) amongst different QoS attributes

and costs; this is referred to as objective-dependency . By sensitivity, we refer to

the correlation between the fluctuation of QoS/cost to the stimuli caused by changing

primitives. Typically, the cost is based on a fixed model and sensitivity. On the other

hand, as we have already discussed in Chapter 4 and 5, QoS models and their sensitivity

are generally dynamic (i.e., which, when and how primitives correlate with QoS tends

to be dynamic). The objective-dependency could be either intra- or inter-service. Intra-

service dependency refers to objectives, which are dependent in nature. This, for example,

can be rental cost and throughput of a cloud-based service. The inter-services dependency

means the objectives of two services could be dependent on each other because of QoS

interference caused by the co-located services on the VM [112] (as resources contention

on a VM) and the co-hosted VMs on a PM [116] (as resources contention on a PM).

In addition, the loosely coupled nature of cloud-based services implies that dependency

might exist between QoS/cost objectives of the services on different PMs, as they are

functionally dependent on the same service.

6.1.1 Motivation and Challenges

Undoubtedly, objective-dependency has great impact on the achieved global benefits.

Therefore, reaching the right granularity of control during the decision making process

of autoscaling is extremely important as it needs to cope with the correct objective-

dependency. By granularity of control, we refer to which objectives should be considered

in the same decision making process for optimisation in the autoscaling. Nevertheless,

determining the right granularity of control in autoscaling is a major challenge. One one

hand, local optimisation of objectives (e.g., optimise objectives per-VM) might not opti-
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mise the global benefit due to the presence of objective-dependency caused by overlapping

sensitivity. On the other hand, a global optimisation in the cloud is likely to result in

large overhead in searching for an autoscaling decision. As a result, there is a trade-offs

between global benefit and overhead in the design. In particular, the difficulty is that

the objective-dependency tends to dynamic and uncertain in nature. It becomes even

harder providing that the QoS models are subject to dynamic changes in their inputs, as

we discussed in Chapter 4. The crucial challenge is how can we obtain the correct in-

formation about the time-varying objective-dependency, which can be used to determine

the effect of a given granularity of control on the global benefits and thus reach the right

granularity.

As we have extensively surveyed in Chapter 2, a common problem in existing autoscal-

ing approaches for the cloud is that they are not designed to be self-aware with respect

to the dependency of QoS and cost objectives for all cloud-based services. Precisely, they

cluster the cloud into fixed regions and granularity of control; optimise for QoS and cost

objectives and aggregate the results in each region. For example, existing autoscaling

approaches aim at either global optimum in one global region (e.g., cloud-level control)

or local optimum in different local regions (e.g., PM-level, VM-level and service-level con-

trol) asynchronously and independently. Both solutions ignore QoS and cost sensitivity

as their decision making assumes fixed region granularity. Given that the cloud tends to

be dynamic and its QoS sensitivity changes at runtime, these approaches can result in

inappropriate clustering of regions, which can lead to non-optimal global benefit or large

overhead when optimising for the said regions. Both global benefit and the overhead are

sensitive to the number of services and their objectives in the decision making process.

Therefore, the trade-offs between global benefit and overhead is influenced by the region

granularity. Consider now a complicated scenario, where the region granularity is linear

to both global benefit and overhead in a given optimisation algorithm: Figure 6.1 shows
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Figure 6.1: Approximated Relationship of Fixed Region Granularities to Global Benefit
and Overhead in Cloud.

the likely trend of different fixed region granularities in relation to the global benefit and

overhead. Based on the degree of granularity of control in decision making, we classify

the approaches for cloud autoscaling into 4 categories, as shown in Figure 6.1. We can

see that finer region granularity implies less number of services and the related objectives

within each region. This tends to result in worse global benefit but smaller overhead.

Consequently, achieving globally-optimal benefit in the cloud call for novel and adap-

tive approach that is capable to dynamically determine the right granularity of control

on-the-fly.

6.1.2 Contributions

The problem, which this chapter addresses is how the autoscaling system can dynamically

and efficiently determine an autoscaling decision that produces globally-optimal benefit.

To achieve such, we propose a self-aware and self-adaptive approach for determining the

right granularity of control, which exploits on the QoS modelling approach from Chapter 4

and 5. Through the awareness of the sensitivity and dependency amongst objectives, this

approach can assist the autoscaling process in efficiently produce globally-optimal benefit

with reduced overhead. The novelty is that QoS and cost objectives of cloud-based services

are dynamically clustered into independent regions where any objectives of a region are
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independent to those of the other regions, as a result each region can be optimised locally.

In particular, we dynamically determine the level of region granularity on-the-fly. This

mechanism is the key enabler of realising self-awareness for determining granularity of

control. Here, self-awareness provide us with seamless and dynamic clustering of the

regions for QoS and cost objectives. To the best of our knowledge, we are the first to

consider dynamic granularity of control for autoscaling in the cloud, therefore the proposed

approach in this chapter can be seen as a contribution to the fundamentals of elasticity in

the cloud enabled by autoscaling. The experiment results reveal that our self-aware and

self-adaptive approach is able to produce similar global benefit to the PM-level control,

and better than cloud-level, VM-level and service-level controls. On the other hand, it

produces smaller overhead than the cloud-level and the PM-level controls; and could be

similar to that of the service-level and the VM-level ones. In particular, the achieved

global benefit and overhead in our approach tends to be better when it is possible to have

more independent regions.

6.2 Problem Analysis and Models

We adopt the same cloud system model, assumptions and the generic QoS model as de-

scribed in Chapter 4. In addition, we do not consider global resources contention caused

by shortage in cloud capacity; our approach works for cases where software and hard-

ware resources tend to be available, which is normal in a cloud environment. Henceforth,

we assume that the maximum demand of software and hardware resources for all cloud

service-instances (e.g., according to their budget) should be satisfied by the capability of

the cloud provider. Under such assumption, we eliminate extreme cases where the ca-

pacity of cloud provider reaches its limits causing likely global resources contention. This

is because the increasing demand of each service-instance would eventually be satisfied

by scale up/out as long as the cost does not exceed the budget. We believe this is a
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reasonable assumption as in realistic scenarios, proper admission control can be applied

to restrict the number of cloud-based service-instances. Moreover, in case where the cloud

provider actually encounters capacity shortage, the unsatisfied services can be switched

to an alternative provider via a cloud selection mechanism, which presumably hold our

assumption. However, the design of admission control and selection mechanism is outside

the scope of this thesis.

6.2.1 Cost and Objective Models

In the context of cloud, utilising control primitives will incur monetary cost, therefore the

total costs model for Sij can be represented by the following objective function:

Cost ij =
n∑
a=1

CP ij
a (t)× Pa (6.1)

where n is the total number of control primitive type that used by service-instance Sij to

supports its QoS attributes. CP ij
a (t) is the provision of the ath control primitive for Sij

at interval t. Pa denotes the corresponding price per unit of the ath control primitive. In

this work, we assume that the price of each control primitive type is fixed for all service

owners and their service-instances. Given that there can be multiple service-instances

running on a VM; while the hardware control primitives (e.g., CPU and memory) can be

only provisioned for each VM, we redefine their provision prices to make them suitable

for the cost model at the service level.

To achieve globally-optimal benefit in elastic cloud, our approach aims at adaptively

and dynamically determine and scale to the configured values of related control primitives,

which supports the best of all QoS attributes (4.1 in Chapter 4) with minimal costs (6.1)

for all service-instances in the cloud. In this chapter, we apply a linear weighted-sum

aggregation to express the global benefit for QoS attributes and costs of different service-

instances in the cloud. Formally, at any given interval t, we aim to optimise the global
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objective by maximising the function in 6.2.

n∑
i=1

m∑
j=1

w′ij · (
l∑
a

wa ·QoS ij
a (t)−

r∑
b

wb ·QoS ij
b (t)− w(l+r+1) · Cost ij ) (6.2)

where n and m are the total number of services and their instances in the cloud re-

spectively; w′ij is the weight for each service-instance. Because the global objective is to

maximise (6.2), we need to carefully place the maximised QoS (e.g., throughput) and the

minimised ones (e.g., response time); thus l and r are the total number of the maximised

and minimised QoS for Sij respectively; wa , wb and w(l+r+1 ) are refer to the corresponding

weight of the QoS and cost for Sij. In addition, the optimisation of (6.2) should be subject

to the constraint of budget and SLA.

It is worth noting that the purpose of the approach in this chapter is not to find out the

best formalisation of the global benefit and its optimisation algorithms; but to evaluate

the effectiveness of our self-aware and self-adaptive approach in handling the granularity

of control towards reaching globally-optimal benefit. In the next chapter, we will look at

more sophisticated formalisation (e.g., removal of the weights) of the global benefit.

6.3 Designing Self-Aware and Self-Adaptive Granu-

larity of Control

Recall that our objective is to optimise the global benefit for QoS attributes and costs of all

service-instances. Therefore, from a logical point of view, our basic problem entity in the

cloud are different objectives, i.e., to maximise/minimise QoS (4.1) and to minimise cost

(6.1), for different service-instances. The objective functions of these objectives are their

corresponding QoS/cost models, the kth objective of Sij is denoted by O ij
k . In particular,

we argue that any two objectives are either dependent (i.e., conflicted or harmonic) or

independent (i.e., an objective is neither directly/transitively conflicted nor harmonic with
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another). With this in mind, we propose a two-phases region clustering, where the first

phase clusters the objectives into different independent super-region, which defines the

boundary of likely independent objectives for the entire cloud under current deployment.

The purpose of super-region is to classify those objectives, which might be independent

for now but could become dependent to the others as the QoS sensitivity changes. In

other words, the objectives should be clustered into the same super-region as long as

they are likely to have objectives-dependency. In the second phase, the objectives within

each super-region are further clustered into smaller independent regions where the local

optimisation and decision making takes place. By independent regions, we refer to the

case where any objective from a region is currently independent to any objective from

another region at given time. By doing so, the search space of the global objective function

in (6.2) is clustered into n subspaces based on sensitivity, where n is equivalent to the

number of regions. The aggregate objective of each subspace (still can be expressed by

(6.2), but with smaller search space) is optimised independently and asynchronously.

The basic principle behind our approach is that, we can reach a globally-optimal ben-

efit by asynchronously doing local optimisation and decision making for locally-optimal

benefit within different independent regions, which have smaller search space. The cluster-

ing of super-region and their regions is a dynamic online process based on the deployment

and sensitivity respectively, which are expressed by rules (we will describe in Section 6.3.1

and 6.3.2).

In the following, we use SRi to denote the ith super-region and Ri
k to denote the kth

region of the ith super-region. The clustering should follow the constraints below:

Constraint 6.1. ∀Oxy
c ∈ (Ri

a ∩R
j
b) = ∅ �

Constraint 6.2. if (∃O ij
a ∈ SRk) and (∃O ij

b ∈ SRl), then SRk = SRl �

Constraint 6.1 means that each objective can at most belongs to one region within

a super-region. Constraint 6.2 indicates that all objectives of a service-instance should
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Figure 6.2: Overview of the Notion of Super-Region and Region.

belong to an identical super-region. However, these objectives might belong to different

regions within such super-region. The logical view of our two-phases region principle in

the cloud is shown in Figure 6.2 where we assume a simple scenario consists of 3 PMs, 4

VMs and 6 service-instances with various QoS/cost objectives. The two solid (red) cycles

represent two super-regions. Different colours on the objective entities express different

regions within those two super-regions. In addition, there is a functional dependency

between S41 and S31, which means that S41 requires the invocation of S31 to complete its

service.

6.3.1 Super-Regions

Objectives in the entire cloud can be clustered into different super-regions. Each of the

super-region contains the objectives of service-instances that are likely to be directly or

transitively dependent. The clustering rule of super-regions is specified as:

Rule 6.1. Given Sab , Scd and ∀Ocd
i from SRk, then the jth objective of Sab (i.e., Oab

j )
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belongs to SRk if:

1. Sab and Scd are deployed on the same VM/PM, or

2. Sab has direct functional dependency on Scd, or

3. Scd has direct functional dependency on Sab.

Rule 6.1 assumes arbitrary service-instances Sab and Scd. It also assume that the

objectives of Scd are in the super-region SRk . Under these assumptions, objectives of Sab

are said to belong to SRk if and only if it follows any of the above three conditions (either

directly or transitively).

Consider the scenario in Figure 3 as an example. The objectives on PM1 are assigned

to the same super-region because they satisfy condition 1 in Rule 6.1. On the other

hand, the objectives on PM2 and PM3 form another super-region as they satisfy all the

conditions. In particular, the objectives of S12 and S31 are within the same super-region

even they do not directly satisfy any of the conditions. This is because S41 functionally

depends on S31, thus they satisfy condition 2. In addition, S41 and S12 satisfy condition

1. As a result, the S12 and S31 transitively satisfy the conditions in Rule 6.1 via S41.

Given the assumption that shortage in cloud capacity is beyond our concerns, the

cluster rule of super-regions are designed based on the fact that the objectives of a service-

instance and its functionally dependent service-instances are very likely be dependent

under some scenarios (e.g., sequential interaction). In addition, the likely QoS interference

can only be caused by the co-located service-instances on a VM and the co-hosted VMs

on a PM. Therefore, the objectives from any service-instances that do not directly or

transitively satisfy Rule 6.1 can be optimised independently as they would have no way

to influence each others.

The clustering of super-region could change at runtime due to the dynamic cloud envi-

ronment. The super-regions would be re-clustered according to Rule 6.1 upon deployment
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changes, for examples, VM migration/replication, PM boots-up/shutdown and changes

in service compositions etc.

6.3.2 Regions

Within each super-region, we further cluster the objectives into different independent

regions, where a local optimisation algorithm is running. The clustering of regions could

be triggered upon symptoms described in Section 6.3.3. The aim is to further narrow

down the number of dependent objectives according to their current sensitivity at a given

time. Therefore, the cluster Rule 6.2 of regions are designed based on the sensitivity of

QoS and cost models:

Rule 6.2. Within a super-region SRl, given Ocd
i and any Oab

j from Rl
k, then Ocd

i should

also belong to Rl
k if Ocd

i has inputs in common to Oab
j and these inputs are parts of the

final autoscaling decision, i.e., the control primitives. �

Concretely, Rule 6.2 expresses that an objective should belongs to a region Rl
k if and

only if it has at least one identical primitive input to one or more objectives from Rl
k

(meaning that they are dependent and have overlapping sensitivity). If two objectives

have neither the common inputs, which are parts of the final autoscaling decision, nor

common inputs to the same intermediate objectives, they are said to be independent

during optimisation and decision making.

Using the scenario in Figure 6.2 as an example. There are two regions within the left

super-region; this is because the objectives of S11, S21 and S42 use certain identical control

primitives inputs. On the other hand, the objectives of S32 is in an alternative region

because it is insensitive to and has no identical inputs to any of those objectives from S11

and S21 as it suffers limited QoS interference on the co-located services. In particular,

suppose that O11
2 has identical inputs to O21

1 and O11
1 ; O11

1 and O21
1 do not directly

satisfy Rule 2. However, all of these 3 objectives are put in the same region because
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O11
1 and O21

1 are transitively satisfy Rule 2 via O11
2 . Similar scenario occurs in the right

super-region. In addition, we can see that even O31
1 , O31

2 and O31
3 are objectives of the

same service-instance, O31
2 is put in an alternative region to that of O31

1 and O31
3 . This

is a possible scenario: suppose that O31
3 is cost objective, O31

1 and O31
2 are throughput

and consistency QoS objective respectively; it is likely that O31
2 is only sensitive to an

unique control primitive (e.g., ordering error), which is free of charge and henceforth, it

is independent on O31
1 and O31

2 .

Similar to the super-regions, the clusters of regions are also subject to dynamic

changes. However, region portioning is likely to change more frequently than that of

the super-region. This is because it requires updates when changes in QoS sensitivity

tend to be significant. Examples of significant QoS sensitivity changes could include sce-

narios, where QoS is becoming sensitive to a new primitive or insensitive to an existing

primitive. Insignificant changes on how the primitives correlate with QoS cannot trigger

re-clustering of the regions.

6.3.3 The Workflow

The physical deployment of our approach is shown in Figure 6.3. As we can see the

architecture is deployed as decentralised instances, each of which running on a separate

VM (e.g., Dom0 on Xen [6]) on every PM in the cloud. For our autoscaling framework,

the contributions of this chapter realise self-awareness in the internal self component,

namely Region Controller. In particular, self-awareness in Region Controller is mainly

concerned with knowing objective dependency and the effects of control granularity to

the global benefit. Table 6.1 shows the mapping between the sub-components of Region

Controller and the self-awareness capabilities. In such way, self-awareness permits better

self-adaptivity, not only at the local level of the region controlling process, but also at

the global level of the autoscaling process. In the following, we explain the workflow and
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Table 6.1: The Mapping Between Self-Awareness Capabilities and the Sub-Components
for Determining Granularity of Control in Cloud Autoscaling.

Self-
Awareness
Capability

Component Description

Interaction-
awareness

Super Region
Cluster and
Region Cluster

Knowing how the region controlling process can be
affected by the objective dependency.

Goal-
awareness

Region Cluster Knowing how the region controlling process can be
affected by the QoS and cost models.

Self-
expression

Super Region
Cluster and
Region Cluster

Self-adapting its regions and their content.

...

......

Region Region...

Decision Maker

Region Controller

QoS Modeller

Sensor Actuator

VM VM VM

Super Region Cluster Region Cluster

Dom0

1

2

3 4

7

5

6

Figure 6.3: Overview of the Architecture for Dynamically Determining Granularity of
Control in Autoscaling.

those sub-components in greater details.

The workflow of our approach has also been demonstrated in Figure 6.3. More pre-

cisely, the sensor on each PM collects the data (e.g., QoS values, usages of control prim-

itives and values of environmental primitives) from the underlying VMs and service-
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instances; and possibly from other PMs due to functional dependency. In addition, the

Sensor could sense deployment changes and QoS sensitivity changes from other PMs.

Next in step 1, the Sensor normalises all the raw information. Once the QoS Modeller re-

ceives both current and historical data after normalisation, this data is then used to build

QoS models. At step 2, the QoS models, cost models and the related detected changes

are transiting to the Region Controller, which realises the region controlling approach

proposed in this chapter. The clustering of super-region/region and/or adaptation can be

triggered if one or more of the following symptoms is detected:

• Symptoms 1: Proactively detect if the QoS of a service-instance is likely to violate

SLA constraint by using the QoS models.

• Symptoms 2: Reactively detect if the QoS of a service-instance has violated its SLA

constraint and/or if the utilisation of a control primitive has violated the constraint.

• Symptoms 3: Significant changes in the QoS sensitivity of the objectives in a man-

aged region.

• Symptoms 4: Deployment changes occur in a managed super-region.

Symptoms 1 and 2 would trigger the elastic autoscaling of the managed service-

instance(s); whereas, symptoms 3 and 4 require the approach to adapt itself by re-

clustering the super-regions and/or regions. In particular, to prevent the problem of

triggering elastic adaptation too frequently, symptoms 1 and 2 are valid only if the leap

time after the previous adaptation for the affected service-instances is more than a thresh-

old t. Once we reach the Region Controller component, the changes in symptoms 3 and 4

would be addressed separately in a hierarchical stack. Concretely, Super-Region Cluster

component manages symptom 4 and maintains the super-region on to its PM as only one

super-region exists on a PM according to Rule 1. In the lower stack, Region Cluster com-

ponent manages the regions within the aforementioned super-region (step 3) according to
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Rule 2; it aims to cope with symptom 3. Additionally, it could be triggered by symptom

4 as the cluster of a super-region might change. Once both symptoms 3 and/or 4 are re-

solved, the propagation goes to the the Decision Maker component within each region is

designed to address symptoms 1 and 2. This can be done through dynamically searching

the best adaptation strategies toward the locally-optimal benefit of region, using the QoS

and cost models (step 4). In particular, the Decision Maker is triggered independently

and asynchronously for each region. Given that functional dependency might exist for

service-instances form different PMs, there are cases where a region can be associated

with multiple PMs. Therefore in order to ensure that each region is optimised on one

PM; the Decision Maker can be activated only if the leader of those PMs confirm that the

region is not currently being optimised on any other PMs. These processes are expressed

as step 5 and 6.

Once the autoscaling decision is determined, the process proceeds to the Actuator via

step 7. In particular, it is responsible for determining which concrete actions (e.g., scale

up/down, in/out and/or VM migration and replication etc) need to be taken in order

to fulfil the decision. In this work, we consider both vertical and horizontal scaling and

apply a simple solution to determine the actions, i.e., we always try vertical scaling (i.e.,

scale up/down) first before horizontal scaling (i.e., scale out/in). This is because hori-

zontal scaling is usually more expensive than vertical scaling. As for the VM migration/

replication decision, we always choose the one that result in smaller overhead based on a

predefined VM profiling pattern.

6.4 Experiments and Evaluations

To evaluate global benefit of the autoscaling decisions produced by our approach and the

overhead for reaching these decisions, we have conducted an experimental evaluation. We

compare our self-aware and self-adaptive approach (we simply refer to as self-aware ap-
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proach in the following sections) to other 4 non-self-aware approaches and styles that do

not cater for sensitivity in the autoscaling process. Each of the 4 approaches assumes dif-

ferent fixed region granularities: service-level, VM-level, PM-level and cloud-level control.

Because these 4 styles do not consider symptoms 3 and 4; they trigger elastic adaptation

only when symptoms 1 and/or 2 are detected.

6.4.1 Experiments Setup

We have implemented the architecture prototype using Java JDK1.6, and we assessed the

elastic autoscaling of 8 hypothetical cloud-based service-instances1 under the control of

our prototype. In the experiment setup, each service-instance was deployed on software

stack including Apache, Tomcat and MySQL. We simulate a synthetical workload to each

service-instance. The workload has been designed in a way that the intensity was sufficient

for causing QoS interference on the co-located services and co-hosted VMs. The testbed

is a private cloud, where PMs are connected by Gigabit Ethernet and a switch. Xen [6]

is used as the underlying hypervisor. The initial deployment and the considered cloud

primitives of our experiments are shown in Table 6.2. The scale of each control primitive

and their corresponding prices are specified in Table 6.3.

It is worth noting that, unlike the previous chapters, we do not use RUBiS benchmark

and the FIFA 98 workload in the experiments. This is because to better evaluate the

approach under various objective dependency, it requires a highly customizable testbed

to simulate the scenarios of different levels of objective dependency. This is very difficult,

if not impossible, to be achieved with the RUBiS benchmark and the FIFA 98 workload,

therefore we have used artificial service and workload to better control the scenarios in

the experiments.

For simplicity, we assume that each service-instance has only one QoS requirement,

1We have implemented those service-instances are stateless service. However, stateful services would
not affect the experiment results in our problem
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Table 6.2: Initial Deployments and the Examined Objectives/Primitives.

PM VM Service-
Instance

Objective Software CP Hardware CP EP

PM1
VM

S11 Throughput
and cost

Max threads
CPU and Memory

workload

S21 Throughput
and cost

Max threads workload

VM
S31 Throughput

and cost
Max threads

CPU and Memory
workload

S41 Throughput
and cost

Max threads workload

PM2 VM
S12 Throughput

and cost
Max threads

CPU and Memory
workload

S51 Throughput
and cost

Max threads workload

PM3 VM
S32 Throughput

and cost
Max threads

CPU and Memory
workload

S61 Throughput
and cost

Max threads workload

Table 6.3: Configured Values for Autoscaling and Price of Control Primitives.

CP Optional Values Unit Price

Max threads from 5 to 50, 5 unit
gap

thread count $0.8 for each 5 unit
per hr

CPU from 1 to 8, 1 unit
gap

Compute unit $2.5 for each 1 unit
per hr

Max threads from 0.1 to 2, 0.1
unit gap

GB $1.5 for each 0.1
unit per hr

which is throughput and one predefined cost model. To optimise the global objective

function in (6.2), we apply random optimisation algorithm with the same number of

iterations for each approach. This is because exhaustive algorithms might not be able to

produce a decision efficiently due to the large number of possible autoscaling decisions.

In addition, we assume that these service-instances and their QoS/cost are equivalently

important and thus all weights in the global objective function are set to 1.
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Table 6.4: Number of Regions for Each Granularity of Control Under Different Setups of
Service-Instances.

Setup Number of regions
self-aware and

self-adaptive approach
cloud-
level

PM-
level

VM-
level

service-
level

2 service-instances maximum of 1 1 1 1 2
4 service-instances maximum of 1 1 1 2 4
6 service-instances maximum of 3 1 2 3 6
8 service-instances maximum of 4 1 3 4 8

6.4.2 Global Benefits

To examine the global benefit of the autoscaling decision produced by our self-aware

and self-adaptive approach, we run 4, 6 and 8 service-instances setups separately for 100

sampling intervals—we omit the case of 2 service-instances here as its result does not differ

much as when compared with the case of 4 service-instances. For each of the setup, we

collect the quality of global benefit for each autoscaling decision made during the period.

The purpose of the different setups is to examine the sensitivity of our approach to the

total number of objectives in cloud. Under each setup, we have performed independent

runs for each of the five approaches. The global benefit is measured by score, which is

the average result calculated by (6.2) for the interval after a previous autoscaling decision

point and before the next one. Each of these intervals is referred to as effect point. Table

6.4 illustrates the number of regions for each approach, which was observed during the

experiments. It is worth noting that unlike the other approaches, the number of regions

in our self-aware and self-adaptive approach is subject to dynamic change. Therefore, the

result of our approach shown in Table 6.4 is the maximum number of regions that have

been observed.

Figure 6.4-6.6 illustrate the results of the global benefit score (y-axis) in relation to

each effect point (x-axis). Precisely, Figure 6.4 shows the global benefit of our approach
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Figure 6.4: Global-Benefit in Case of 4 Service-Instances.
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Figure 6.5: Global-Benefit in Case of 6 Service-Instances.
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in contrast to the other 4 using setup for service-instances S11, S21, S31 and S41. As

we can see that the differences in global benefit for the self-aware, the PM-level and the

cloud-level approach are marginal. This is because they cluster all the objectives of these

4 service-instances within the same region. Therefore, they perform similarly under such

case. In contrast, the service-level and the VM-level control achieve much worse global

benefit following the elastic adaptation. This is due to incorrect clustering of the regions

as they ignore the sensitivity caused by QoS interferences on co-located services and co-

hosted VMs, which are significant in our experiments. Figure 6.5 considers two more

service-instances (S12 and S51) in addition to the ones IN Figure 6.4. We can see that

the service-level and the VM-level control performs worse than the other three due to the

same reason as the previous case. Surprisingly, although our approach (at most 3 regions)

clusters more regions than that of the cloud-level one, its global benefit is better than that

of the cloud-level one. We believe that this is because we apply random algorithm in the

optimisation and our approach is able to properly cluster the objectives into more regions.

This implies that optimising locally and asynchronously on each independent region could

result in emergent global benefit using probabilistic algorithms. The PM-level (2 regions)

control, on the other hand, also performs better than that of the cloud-level one. We

believe that this is because it clusters the objectives per-PM, which similar to the clusters

produced by our approach and thus meets the actual sensitivity in the experiments by

chance. The self-aware approach performs similarly in contrast to the PM-level control.

This is because they produce similar clusters of regions. The only difference is that our

approach produces one extra region (we observe only 2 objectives within such region),

which is not significant enough to produce emergently better results. However, in the

next section we will show that our approach produces much smaller overhead than that

of the PM-level one.

Finally, Figure 6.6 illustrates the global benefit for all 8 service-instances. We can
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Figure 6.6: Global-Benefit in Case of 8 Service-Instances.

see that the service-level and the VM-level control produce the worst results. The gap

between their results to the other three is larger than Figure 5 and 6. This is due to

the fact that they has incorrectly clustered the regions when introducing more service-

instances, and henceforth affecting the global benefit more seriously. Similar to the case

of Figure 6.5 , our approach performs slightly better than that of the cloud-level one. The

PM-level control performs similar to our approach for the reasons previously explained.

In summary, the elastic adaptations of our self-aware and self-adaptive approach pro-

duces much better global benefit than the service-level and the VM-level control under

the presence of QoS interferences. In addition, the global benefit produced by our ap-

proach are slightly better than that of the cloud-level control and similar to the PM-level

control. We observe that the improvement in global benefit tend to be better when having

more independent regions. In addition, we believe that our approach can outperform the

PM-level one when the number of QoS attributes and/or the number of services on each

PM increase.
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Figure 6.7: Overhead Under Different Numbers of Service-Instances.

6.4.3 Overhead

To evaluate the overhead for reaching an autoscaling decision, we compare the average

time taken in the decision making processes of our approach to the other 4 competitors,

under the setup of 2, 4, 6 and 8 service-instances. In particular, the average time is

calculated based on the time taken for reaching all the autoscaling decision within the

entire experiment run. As shown in Figure 6.7, which reveals the overhead (y-axis) in

relation to the number of service-instances (x-axis), we can see that in case of 2 service-

instances (S11 and S21), the service-level control produces the smallest overhead. This

is because it performs optimisation and reaches an autoscaling decision for each service-

instance independently. The remaining approaches, on the other hand, produce similar

overhead because all the service-instances exist on a single VM.

In the case of 4 service-instances (S11, S21, S31 and S41), the differences among the

proposed approach, the PM-level and the cloud-level control are marginal. They tend to
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result in bigger overhead than that of the service-level and VM-level ones. This is because

the our approach and the PM-level one only results in one region; they are actually the

same as the cloud-level control. In contrast, the service-level and the VM-level style are

unaffected by the increasing number of service-instances. In particular, the VM-level

control produce bigger overhead than that of the service-level one but better than the

other three. This is attributed to the fact that it optimises per-VM, which is coarser-level

than the service-level style. As expected, in case of 6 (S12 and S51 in addition to the case

of 4) and 8 service-instances, the overhead of the proposed approach and the PM-level

one is becoming better than that of the cloud-level one. This is because our approach

and the PM-level control tend to produce more regions (as shown in Table 6.4), which

implies that it is able to asynchronously search within a smaller search space for each

region with less complexity in contrast to the cloud-level one. On the other hand, the

service-level and the VM-level styles remain unaffected. However, we can see that our

approach perform similar to the VM-level style and only slightly worse than the service-

level style. In contrast to the PM-level style, our approach still performs better. This is

attributed to the fact that we further allow clustering within a PM. Consequently, this

result in one more regions and thus the search space is further reduced. We can see that

even with only one more region, the achieved overhead of our approach gains considerable

improvement. We believe that such improvement can be amplified when it is possible to

cluster more regions.

Interestingly, we can see that unlike the overhead for cloud-level control, which in-

creases linearly; the overhead of our approach and the PM-level control increase from the

cases of 2 to 4 service-instances. They can drop again from the cases of 4 to 6 and remain

stable for the case of 8 service-instances. This is because both approaches determine that

only one region is allowed for the case of 2 and 4 service-instances. Therefore, it is the

same as the cloud-level one and the overhead could also increase in a similar way. When
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6 and 8 service-instances exist, both architectural styles result in more than one region.

Henceforth, the average result of overhead tends be smaller than previous cases, as there

are numbers of autoscaling decisions made for a region with smaller search spaces than

the single region in case of 2 and 4 service-instances.

To conclude, our self-aware and self-adaptive approach is able to achieve smaller over-

head in contrast to the cloud-level and the PM-level control as the number of region

increases. The overhead of our approach is close to that of the service-level and the VM-

level style. However, we can observe from Section 6.4.2 that the achieved global benefit

are significantly better than these two. In addition, the experiments reveal that the over-

head of our approach is sensitive to the number of clustered regions. In particular, the

more independent regions are clustered, the smaller overhead is realised.

6.5 Conclusion

We have proposed a self-aware and self-adaptive approach that assists the autoscaling

process for dynamically guaranteeing globally-optimal benefit in elastic cloud. This is

achieved by dynamically clustering the objectives into regions for more efficient and ef-

fective decision making, which is the foundation to enable self-awareness for determining

granularity of control in cloud autoscaling. In this way, the autoscaling process can adap-

tively reach to the right granularity of control. Further, the propose approach has been

designed leveraging on the principle of self-awareness. Experimentally, we have evalu-

ated our approach with respect to global benefit achieved by the produced autoscaling

decisions and the overhead to reach these decisions. We compare the results to other 4

non-self-aware autoscaling approaches, each of which relies on a fixed granularity of con-

trol. The results reveal that our approach produces similar global benefit to the PM-level

control, and better than the rest approaches. On the other hand, it produces smaller

overhead than the cloud-level and the PM-level control; and could be similar to that of
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the service-level and the VM-level ones. The improvement on global benefit and overhead

tends to amplify when it is possible to have more regions.

So far, we have explored the self-aware and self-adaptive process in the QoS Modeller

and Region Controller components of our autoscaling framework. As discussed in this

chapter, we have demonstrated the benefit of the QoS models for determining the right

granularity of control when autoscaling in the cloud. We have also illustrated that, by

incorporating our QoS modelling and the region clustering approach, the global benefits

of autoscaling in the cloud can be further improved without heavy human intervention.

However, the aforementioned approaches have not explicitly considered the trade-off de-

cision making problem, which is one of the key challenges in autoscaling. In the next

chapter, we will refine the objective model and propose self-awareness enabled solution to

this problem, building on the approaches described in Chapter 4, 5 and this chapter.
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Chapter 7

Self-Aware and Self-Adaptive

Trade-off Decision Making in

Cloud Autoscaling

7.1 Introduction

The core phase in autoscaling is the dynamic decision making process that produces the

optimal (or near-optimal) decision , which consists of the newly configured values of

control primitives, for all the related objectives. However, as mentioned in Chapter 6,

objective-dependency (i.e., conflicted or harmonic objectives) often exist in the deci-

sions making process, which implies that trade-offs are necessary and the overall quality

of autoscaling can be significantly affected by the trade-offs made, hence render it as a

complex task. This is especially true for the shared infrastructure of cloud where objective-

dependency exists for both intra- and inter-services. That is to say, trade-off is not only

caused by the nature of objectives (intra-service), e.g, Throughput and cost objective of

a service; but also by the QoS interference (inter-services) due to the co-located services

on a VM and co-hosted VMs on a Physical Machine (PM) [112] [116]. This is known as
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a typical consequence of resources contention in cloud [86] [99] [116]. Therefore, given

the presence of complex objective-dependency, it is clear that the decision making for

autoscaling in the cloud is very difficult, if not impossible, to be handled by human de-

cision makers; and thus urges the need for self-adaptivity. Among the trade-off decisions

that quantified by the commonly used pareto-dominance relation, we are particularly in-

terested in the ones that achieve well-compromised trade-offs (a.k.a. knee points).

A decision is said to result in well-compromised trade-off, as when compared with its

neighbouring decisions, if it largely improves certain objectives; while causing relatively

small degradations to others. In other words, the improvements of all dependent objec-

tives tend to be well-balanced. The difficulty lies in how to dynamically and efficiently

achieve well-compromised trade-offs for autoscaling in the cloud, which we address in this

chapter.

7.1.1 Motivation and Challenges

The QoS performance of services and the cloud environment tend to fluctuate; conse-

quently, the QoS interference, the possible trade-off decisions for autoscaling and their

effects on the objectives are dynamic and uncertain. Existing work for autoscaling de-

cision making in the cloud can be either static [60] [52] in the sense that the mapping

between conditions and decisions are fixed; or dynamic [10] [95] where the runtime condi-

tions and behaviours are used to ’learn’ new decisions. Those state-of-the-art approaches

often ignore QoS interference and its related trade-offs in autoscaling. Furthermore, they

tend to be limited in handling two challenges related to the trade-offs:

• Firstly, most of the work restricts the autoscaling decisions into fixed bundles (e.g.,

VM instance), which is rather inflexible, and thus it is necessary to consider any

combinations of the configured values for control knobs [137]. However, given the

potentially large amount of possible combinations of the configured values, finding
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the optimal decisions and reasoning about their effects on objectives is known to be

an NP-hard problem [124] [57]. Henceforth, the key challenge is how to dynamically

optimise diversified trade-off decisions and thus produce better coverage of the trade-

offs surface.

• Secondly, another challenge is concerned with how to dynamically extract the deci-

sions that achieve well-compromised trade-offs, subject to runtime uncertainty.

Concretely, recall our survey of existing work for making autoscaling decision pre-

sented in Chapter 2, the static approaches are insufficient as they are restricted by the

simplified assumptions about the conditions and the mapped decisions. Although dy-

namic approaches have been proposed to address this limitation, most of them, e.g., [69]

only focus on optimising a single objective (e.g., cost), where other objectives are treated

as constraints. This means that the search process tends to be limited in exploring trade-

offs due to the optimisation of single objective. To this end, weighted-sum formulation

that aggregates all the objectives into a single one has been widely applied, e.g., [55].

Nevertheless, weighted-sum of objectives requires human intervention to carefully design

and tune the weights for the objectives, which is often an extremely complex and error-

prone exercise. In addition, finding the right weights in advance is extremely difficult

in the presence of QoS interference, as it is difficult to presume the relative importance

of the services and their levels of importance. On the other hand, a single aggregation

can track the search in a smaller search space and the resulted decisions are driven by

coarser and less information about the trade-offs surface. In other words, the optimality

and diversity of the resulted trade-offs decisions tend to be limited and therefore causing

it difficult to achieve well-compromised trade-offs.

There is a limited amount of work that leverage on the notion of multi-objective

optimisation [124] [57] [51] and pareto-dominance [67] based sort. Most commonly, they

apply Multi-Objective Genetic Algorithm (MOGA), e.g., NSGA-II [47], to search the
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trade-offs decisions without explicitly using weights. However, since they do not focus on

decisions that produces well-compromised trade-off, the amount of resulted decisions is

unavoidably large and can easily lead to imbalanced improvement.

7.1.2 Contributions

In this chapter, we propose a self-aware and self-adaptive approach for making autoscal-

ing decision in the cloud without human intervention. This approach grounds on Multi-

Objective Ant Colony Optimisation (MOACO) and a new compromise-dominance mecha-

nism, which are the key enablers of self-awareness for decision making in cloud autoscaling.

In this way, the approach dynamically and adaptively adjust its own behaviours to (i)

discover the possible trade-offs decisions at runtime; and (ii) extract the decisions that

produce well-compromised trade-offs with respect to all related objectives.

We have chosen MOACO because (i) it has been shown that existing MOGA based

autoscaling decision making in the cloud, such as NSGA-II, cannot optimise and make

trade-offs for more than 4 objectives [111]; while our problem needs to handle larger

numbers as we consider the trade-offs caused by QoS interference, e.g., we have considered

30 objectives in our experiments. (ii) As discussed in [111], the limitation of MOGA for

large number of objectives is due to it needs pareto-dominance to evaluate the overall

quality of decisions for all objectives as the algorithm runs; henceforth, causing the MOGA

to obscure and miss important information about the trade-off surface, which restricts its

optimality and diversity when the number of objectives increases. Unlike MOGA, the

nature of MOACO allows us to design it in a way that decisions are evaluated against

each objective for many single objective optimisations in one run, and thus avoiding

the use of pareto-dominance in the optimisation. This is achieved by using aggregative

heuristics and different pheromone structures for the objectives. Hence, we only need to

evaluate the overall quality of decisions for all objectives (i.e., the compromises) after the
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optimisation has been competed. By doing so, the optimisation can optimise and make

trade-offs for larger number of objectives while ensuring good diversity. (iii) the sequential

pareto-dominance sorting of MOGA can incur large overhead; in contrast, MOACO can

gain benefits from parallel programming as each ant works in isolation. (iv) In many

other domains, e.g., [64], it has been shown that MOACO tends to outperform MOGA in

both optimality and diversity.

By separating MOACO and the evaluation of decisions’ overall quality for all objec-

tives, the MOACO is encouraged to explore more information about the trade-offs surface

while saving computational efforts. This design, as shown in [9], tends to produce bet-

ter optimised and diversified trade-off decisions. Instead of using pure pareto-dominance

[67] to evaluate the overall quality of decisions for all objectives during optimisation, we

propose a new mechanism, namely compromise-dominance, to search well-compromised

trade-offs based on the final result of MOACO. Here, we use pareto-dominance [67] to

measure superiority, and a combination of nash-dominance [108] and the distance of de-

cision to measure fairness. In this way, we aim to achieve a well-balanced improvements

for the objectives without explicitly weighting them.

To the best of our knowledge, we are the first to address the problem of reaching

well-compromised trade-offs for autoscaling in the cloud while considering the trade-offs

caused by QoS interference. In particular, we show the effectiveness of the approach for up

to 30 dependent objectives, which is significantly larger than what is considered in state-

of-the-art work (i.e., 2-4 objectives). The experiment results suggest that our approach

produces better trade-offs quality in terms of the numbers of favourable objectives and the

extents to which they are optimised; it also produces smaller violation for requirements.

Moreover, our approach results in acceptable overheads and has balanced over- and under-

provisioning.

193



7.2 Problem Analysis and Models

We adopt the same cloud system model, assumptions and the generic QoS model as

described in Chapter 4. It is worth mentioning that dynamic QoS interference is an often

ignored, but important factor for decision making in cloud autoscaling. Consider, for

example, a scenario where the throughput of a service-instance Sij can be only improved

by provisioning more memory to the underlying VM. Such decision might not be an issue

when the contention is light. However, as the provision increases, eventually it will result

in throughput degradation to the other service-instances on the co-hosted VMs, leading

to dynamic QoS interference [26][139][116]. The same issue applies when we increase the

number of service threads for a service-instance, where the co-located service-instances

on the same VM might be interfered [139][99]. These phenomena imply that there are

trade-offs between the throughput of Sij and those of the other service-instances, which

might be owned by different cloud consumers. It becomes more complex when we need

to consider trade-offs between conflicted objectives, e.g., the throughput and cost of Sij.

All these facts can lead to large number of dependent objectives in a decision making

process (i.e., more than 4). Since it is often too expensive to completely eliminate QoS

interference [116], we aim to optimise the services’ objectives till the point where QoS

interference becomes significant, and then mitigate the effects of QoS interference by

making well-compromised trade-offs.

However, well-compromised trade-offs cannot be guaranteed by existing purely pareto-

dominance based approaches [67]. Given the large number of dependent objectives caused

by QoS interference, quantifying compromise in the trade-offs purely based on pareto-

dominance can lead to a large number of trade-off decisions, which also contain the ones

that have imbalanced improvements. Consider, for example, two decision A and B, sup-

pose that A leads to 9 significantly better objectives than B; while B can only lead to
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one slightly better objective than A. These two decisions are regard as indifferentiable in

the sense of pareto-dominance. Assuming that both decisions satisfy all the requirements

constraints, it is generally the case that A is more preferable than B. However, since they

are equivalent in pareto-dominance, B can be selected instead of A, which results in badly

compromised trade-offs.

As mentioned in Chapter 6, we cluster the objectives into different regions. As a result,

autoscaling in the cloud needs to optimise multiple independent regions, each of which

contains different sets of dependent objectives. To cope with multi-objectivity, we revised

the weighted-sum objective function (as discussed in Chapter 6) to a multi-objective

representation. That is to say, for each region, our goal is to produce an autoscaling

decision d that use the minimal costs to achieve the best possible QoSs, shown as the

following:

Maximise or Minimise
〈
O1(t), O2(t)...Oo(t)

〉
(7.1)

where Oo(t) denotes the oth objective in the region and it can be either QoS attribute

(4.1) or cost (6.1), subject to:

QoSijk (t) � SLAijk (7.2)

Costij(t) 6 Budgetij (7.3)

minija 6 CP ij
a (t) 6 maxija (7.4)

whereby (7.2) states that any QoS attribute should meet its Service Level Agreement

(SLA). (7.3) denotes that the cost of each service-instance should not exceed its budget

requirement on a VM. Finally, (7.4) represents the possible configured values of control

primitives must be selected within a given range of the underlying hardware or software.

minija and maxija are the thresholds to control the range of possible configured values, and

they are dynamically updated online, as we will see in Section 7.3.
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Figure 7.1: Overview of the Autoscaling System with Self-Aware and Self-Adaptive De-
cision Making Approach.

It is obvious that, by omitting any predefined weights of objectives in (7.1), we render

the problem as a discrete multi-objective optimisation problem, which involves multiple

trade-offs and is usually NP-hard [124] [57]. In the following sections, we specify our

MOACO and compromise-dominance based solution to the problem.

7.3 The Architecture for Trade-off Decision Making

in Cloud Autoscaling

To enable self-aware and self-adaptive decision making for autoscaling in the cloud, we

have designed and implemented an autoscaling system using decentralised feedback loops,

which is deployed and running on the root domain of each PM, as shown in Figure 7.1.

The components in our system, except QoS Modeller, are triggered when the system

detects violations of the requirements, i.e., violations of SLA and utilisation constraints

in case of over-provision. In particular, a requirement is said to be violated only if such
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violation has been observed for more than n sampling intervals, where n is a variable that

controls the trade-offs between stability and adaptivity of our system. The sensors on a

PM does not only sense data, but also the QoS models from other PMs. This is because

in some cases, a cloud-based service can be functionally dependent on services running

on the other PMs, thus creating the chances for objective-dependency.

Once the QoS models (as explained in Chapter 4 and 5) and regions of objectives (as

explained in Chapter 6) are identified, the focus of this chapter is to adaptively produce

decision that achieves well-compromised trade-offs with respect to the objectives in each

region. To this end, we design the self-adaptive Decision Maker component. Specifi-

cally, one of the sub-components of Decision Maker is the Optimiser component, which

leverages on MOACO to search and optimise for the possible set of trade-offs decisions.

Next, another sub-component, namely Compromise Explorer, extracts the decisions that

achieve well-compromised trade-offs from the result of Optimiser for autoscaling in the

cloud. Theses two sub-components are specified in Section 7.4 and 7.5 respectively. To

control the diversity of possible decisions, the possible configured values for each control

primitive of a service-instance are bounded within a range, as mentioned in (7.4). The

lower bound is set to the maximum value of the predefined value and the latest observed

one. On the other hand, after the upper bound is initialised by a predefined value, it is

then dynamically adjusted based on the newly decided value and the latest observed one:

it is increased by k% if both values converge to the upper bound; likewise, it is decreased

by k% if both values diverge from the upper bound.

We consider both vertical scaling and horizontal scaling in the actuators. The former

refers to change the configurations and provision of control primitives within a PM; the

latter refers to boots up/shutdown VMs on the other PMs via migration or replication.

In our system, vertical scaling always takes higher priority, providing that modern hyper-

visors (e.g., Xen [6]) can achieve dynamic vertical scaling with negligible overheads. The
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Table 7.1: The Mapping Between Self-Awareness Capabilities and the Sub-Components
for Making Trade-Off Decisions in Cloud Autoscaling.

Self-
Awareness
Capability

Component Description

Interaction-
awareness

Optimiser Knowing how the decision making process can be af-
fected by the objective dependency.

Goal-
awareness

Optimiser and
Compromise
Explorer

Knowing how the decision making process can be af-
fected by the QoS and cost models, and their require-
ments.

Self-
expression

Optimiser and
Compromise
Explorer

Self-adapting its behaviours towards well-
compromised trade-offs.

resources on a PM are provisioned to the VMs in a first-come-first-serve basis. The hori-

zontal scaling, on the other hand, is only triggered when the resources of the PM tends to

be exhausted, i.e., when the total upper bounds of all co-hosted VMs for a resource type

exceeds the PM’s capacity, the last service-instance that requires to increase the upper

bound would be migrated/replicated. Likewise, a VM is removed when its provisions and

utilisations for all resource types are below thresholds.

To correctly design the Decision Maker component and improve its self-adaptivity

at the local level, the proposed approach has been leveraging on the principle of self-

awareness. Table 7.1 shows the mapping between each sub-components of Decision Maker

and the self-awareness capabilities. Here, the self-awareness is concerned with knowing the

effects of decisions and the possible trade-offs. By processing the knowledge acquired via

the other two internal selves, i.e., QoS Modeller and Region Controller, the final internal

self Decision Maker would eventually lead to better self-adaptivity at the global level of

the autoscaling process.

From the perspective of our autoscaling framework, the contributions of this chapter

realise self-awareness in the internal self component, namely Decision Maker. In partic-

ular, self-awareness in Decision Maker is mainly concerned with knowing the trade-offs
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in making decisions. In the following, we will specify the techniques and algorithms that

achieve self-awareness in Decision Maker.

7.4 Searching and Optimising Trade-offs Decisions

for Autoscaling

Recall that for each region, our aim is to optimise (7.1) subject to the requirements

and constraints in (7.2)-(7.4). To this end, we follow the multi-objective ant system

described by [9], in which there are one colony and n pheromone structures where n is the

number of objectives being optimised. The MOACO relies on probabilistic search-based

optimisation that assumes a fixed number of iterations. In each iteration, the ants select

different QoS or cost objectives to optimise for. By the end of an iteration, each ant

produces an autoscaling decision containing the selected configured values for those cloud

control primitives that are inputs of the objectives in (7.1). This is achieved by the use

of a probabilistic rule, which expresses the desirability for an ant to choose a particular

value for each control primitive. This rule is based on the information about the current

pheromone trail, which drives the ants to search better decisions for a particular objective

that is selected; and an aggregative heuristic that guides the ants toward choosing better

overall decisions with respect to all objectives. Hence, the higher the amount of pheromone

and heuristic information is associated with a particular value of the control primitives, the

higher the probability is that an ant will choose it. This stochastic nature of the algorithm

allows the ants to explore a large space of possible decisions as the search proceeds.

Henceforth, it provides more alternatives from the trade-off surface than approaches that

based on weighted-sum of objectives.
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7.4.1 Probabilistic Rule

Suppose that an ant selects the oth QoS or cost objective to optimise; the probability for

selecting the xth configured value of the ath control primitive is defined by:

px,a,o =
(τx,a,o)

α × (ηx,a)
β∑

y∈S(τy,a,o)α × (ηy,a)β
(7.5)

whereby S denotes the set of possible configured values for the ath control primitives;

τx,a,o is the pheromone for the xth configured value of the ath control primitives when

optimising the oth objective. ηx,a is the heuristic factor for the xth configured value

of the ath control primitive. α and β are two parameters that determine their relative

importance. It is worth noting that for each ant, the control primitives, which we need to

find configured values for, are not restricted to the inputs of the oth objective function,

but also include those of the other QoS or cost objectives in (7.1).

7.4.2 Heuristic Factor

Instead of aggregating the objectives to be optimised, we aggregate the heuristic infor-

mation to favour the decisions that tend to improve the overall quality of all objectives.

In this way, we aim to handle large number of objective while do not require to specify

weights on objectives. To this end, we leverage on the normalised, scalar-valued differ-

ence between the total improvement and the total degradation for all objectives. This is

achieved by comparing the outputs when using a newly configured value to that of the

original value, formally expressed as:

ηx,a =


∑m

o=1 Ix,a,o
1+

∑m
o=1 Dx,a,o

if
∑m

o=1 Ix,a,o 6= 0

ηmin
x,a

1+
∑m

o=1 Dx,a,o
otherwise

(7.6)
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whereby, for all m objectives that need to be optimised,
∑m

o=1 Ix,a,o is the total im-

provement over the current setup when using the xth configured value of the ath control

primitive in the decision. Likewise, the total degradation in contrast to the current setup

is denoted by
∑m

o=1Dx,a,o. To prevent zero heuristic factor in case where the configured

values cannot improve any objectives, we use the minimum non-zero heuristic over all

possible configured values, denoted by ηminx,a , as the initial value. It has been shown that

these operators promotes better coverage for searching possible trade-offs decisions [9].

In this way, even though the ants select different single objectives to optimise for, the

heuristic information still ensure that the configured values, which lead to overall better

decisions, are relatively more attractive.

7.4.3 Pheromone Update

After all ants complete the search in an iteration, the pheromone trails need to be updated

in order to help guiding the search towards better decisions. Unlike the heuristic infor-

mation, the pheromone is designed to favour the decisions that improve each objective

individually. As a result, the pheromone for a particular configured value of a control

primitive is specific to an objective. Each pheromone trail is updated by using the rule

below:

τa,x,o = (1− ρ)× τa,x,o + ∆τ besto (7.7)

where ρ (0 < ρ < 1) is a constant that simulates the evaporation of pheromone trails,

it determines the speed of evaporation—a larger value implies faster evaporation. Thus,

the corresponding configured value becomes unattractive quicker. ∆τ besto is a factor that

deposits the pheromone for some favourable decisions. In this work, we follow the MAX-

MIN Ant System [9] in which only the configured values that belongs to the iteration’s

best decision can deposit the pheromone, as defined by the following (CPx,i denotes the
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xth optional value of the ith control primitive):

∆τ besto =



1

1+h(dbesto )−1−h(dglobal−best
o )−1

if CPx,i ∈ dbesto , to argmax h

1

1+h(dbesto )−h(dglobal−best
o )

if CPx,i ∈ dbesto , to argmin h

0 otherwise

(7.8)

where dbesto is the best decision for the oth objective at the current iteration, and dglobal−besto

denotes the best ever decision for the same objective; h is the corresponding objective

function. Therefore, the configured values in the best decisions would become more at-

tractive; whereas the others, which are not part of the best decisions, will lose pheromone

based on the speed of evaporation. In addition, by introducing the best ever decision in

the update, we force the search towards the optimal decision for an objective. It is easy

to see that, by incorporating the heuristic information and pheromones, the MOACO

favours the decisions that do not only benefit all objectives, but also tend to improve each

individual objective as much as possible. In this way, the harmonic objectives can be con-

tinually optimised in parallel till they reach the point where trade-off needs to be made;

while the conflicted objectives would be forced to make trade-offs from the beginning.

Consequently, the MOACO is able to produce higher diversity in the trade-off decisions.

Finally, given the fact that only the iterations’ best decisions are allowed to deposit the

pheromone, the ants may always conclude in the same or similar decisions, which causes

the search to be tracked in local spaces. To resolve this issue, we leverage on the solution

as used by the MAX-MIN Ant System [9], where the pheromone for the oth objective are

bounded within a given range, max min denoted as τmaxo and τmino . By the end of an
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iteration, the bounds are updated using the iteration’s best decision:

τmax
o =


1

h(dbesto )−1×(1−ρ) if to argmax h

1
h(dbesto )×(1−ρ) if to argmin h

(7.9)

τmino = v × τmaxo (7.10)

where h is the corresponding objective function. v is a factor that controls the length of

the range. By doing so, the diversity in the search is increased and it is more likely to

explore a large diversity of different decisions for making trade-offs.

7.4.4 Formal Description

Next, we formally explain MOACO in details by means of an algorithmic description.

As shown in Algorithm 5, the MOACO takes the models from (7.1) and the possible

configured values for each control primitives as inputs. Firstly, MOACO required to take

a set of parameters for initialisation; it then compute the heuristic information and set

each pheromone using an identical value, meaning that at the beginning, each configured

value of a control primitive is equally important for an objective. The search starts off

by using numerous working ants (the number of ants should be greater than the number

of objectives), each of which selects an objective to optimise for. As we can see from

line 6-28, by leveraging on the probabilistic rule, an ant chooses a configured value for

each control primitive till it generates a decision. Such decision is then validated by

examining whether it meets the SLA and budget in (7.2) and (7.3) for all objectives.

if it does then the ant completes its job; otherwise it repeats till the maximum run for

finding a satisfied decision (i.e., those that resulted in no violated requirements). It is

worth noting that in case no satisfied decision is found, the ant would return the best

decision for the selected objective. All discovered decisions are archived regardless of
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Algorithm 5 MOACO for optimising and making trade-offs for autoscaling decisions
Inputs:
given a set of objectives to optimise, the associated set of control primitives inputs CP’
and Va ,which denotes the possible configured values for the ath control primitive
Declare:
q - the current iteration
maxIteration - the maximum iterations
ant - the current ant
maxAnt - the set of working ants
r - the current run of finding decision for an ant
maxRun - the maximum runs of search for an ant
d - the current decision of an ant for an objective
dant−best - the best decision of an ant for an objective
dbesto - the best local decision of all ants for an objective
dglobal−besto - the best global decision of all ants for an objective so far
Outputs:
the set of decisions D for making trade-offs

1: For each configured value of a related control primitives,
2: calculate its heuristic information using (7.6)
3: Initializes pheromone to the same value
4: for each q <maxIteration do
5: q := q+1
6: for each ant ∈ maxAnt do
7: select an objective o from (7.1)
8: r := r+1
9: for each CP ij

a ∈ CP ′ do
10: choose a configured value from Va via (7.5)
11: end for
12: if d is better than dant−best for o then
13: dant−best := d
14: end if
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15: if not all the objectives in d are satisfied then
16: if r <maxRun then
17: go to line 8
18: else
19: go to line 22
20: end if
21: else
22: dant−best := d
23: end if
24: D := D ∪ dant−best
25: if dant−best is better than dbesto for o then
26: dbesto := dant−best
27: end if
28: end for
29: for each objective o from equation (7.1) do
30: if dbesto is better than dglobal−besto for o then
31: dglobal−besto := dbesto

32: end if
33: compute τmino and τmaxo using (7.9)
34: for each CP ij

a ∈ CP ′ do
35: for each configured value in Va do
36: update τx,a,o via (7.7) and (7.8)
37: if τx,a,o >τ

max
o then

38: τx,a,o := τmaxo

39: end if
40: if τx,a,o <τ

min
o then

41: τx,a,o := τmino

42: end if
43: end for
44: end for
45: end for
46: end for
47: return D
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their quality, and the iteration’s best local decision for each objective is determined (line

26). After all ants produce decisions for all the objectives, the best global decision, which

results in the best value for an objective so far, is updated (line 31). Next, we compute

the pheromone bounds and update the pheromone for each configured value of a control

primitive, with respect to each objective (line 33 and 36). To avoid being tracked in

local space, a pheromone trail is reinitialised if it exceeds the upper bound; likewise, it

is updated accordingly if it fails below the lower bound (line 37-42). Eventually, the

search terminates when it reaches its maximum iterations, and returns all the decisions

identified.

7.5 Identifying Well-Compromised Trade-offs for Au-

toscaling

It is clear that MOACO is able to search the possible trade-off decisions for autoscaling in

the cloud; however, given the large amount of decisions produced, it does not cater for the

dynamic and uncertainty of the good compromises in the trade-offs. In this section, we

present a simple but efficient mechanism, namely compromise-dominance, to adaptively

find the decisions that achieve well-compromised trade-offs from the result of MOACO.

Specifically, the compromise-dominance consists of two phases: superiority phase and

fairness phase.

7.5.1 Superiority Phase

The first phase in our compromise-dominance mechanism is to ensure the superior de-

cisions, which are clearly more favourable than the others. To achieve this, we use the

well-known principle of pareto-dominance [67]:

Pareto-Dominance: A decision d1 pareto-dominates another d2, if and only

if, (i) all the objective results achieved by d1 are better than or equivalent to
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those achieved by d2; and (ii) the result of at least one objective achieved by

d1 is better than the result of the same objective achieved by d2.

It is easy too see that if a decision pareto-dominates another, then it is better than

another in terms of the quality of every individual objective and the overall quality for all

objectives. In such context, the decisions, which are not pareto-dominated by any others,

are called non-pareto-dominated decisions. These decisions are pareto optimal in case no

objective can be further improved without making the other objectives worse off. Our

aim in this phase is to identify the non-pareto-dominated objectives. If they do not exist,

we use the decisions that being pareto-dominated the least.

7.5.2 Fairness Phase

After the superior decisions are determined, the second phase aims to ensure the fairness

in a decision. That is to say, we are interested in making the trade-offs well-balanced with

respect to all objectives. To this end, we leverage on Nash-dominance [108]:

Nash-Dominance: A decision d1 nash-dominates another d2 if and only if

there are less objectives that can improve their results by switching from d1 to

d2 than vice-versa.

If a decision nash-dominates another, it means that it is more fair with respect to

all objectives, and thus more stable. In particular, the decisions, which are not nash-

dominated by others, are called non-nash-dominated decisions. As proven in [108], a

non-nash-dominated decision reaches Nash Equilibrium where no objective can be further

improved without changing the results of other objectives. It has been shown that, Nash

Equilibrium is the most fair state for all objectives in the sense that it exhibits fair

competition, or compromise [108]. Here, our aim is to identify the non-nash-dominated

objectives; or those that being nash-dominated the least if there is no non-nash-dominated

objectives.
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However, nash-dominance tends to be limited in reducing the number of decisions

when the number of objectives is small, e.g., less than 4 objectives. To this end, we use

an additional metric, namely distance of decision, to select well-compromised trade-offs

under those cases. Concretely, we select the best value of each objective from all the

decisions identified; these values form a theoretically optimal, but unrealistic reference

points. We then calculate the normalised Euclidean Distance of the result, which is

achieved by each decision, to this reference point. The decision(s), which leads to result

that has the minimal distance, is the one(s) that we are seeking.

7.5.3 Formal Description

We now formally explain the compromise-dominance mechanism in details using an algo-

rithmic description, as shown in Algorithm 6. We can see that the mechanism starts by

searching for satisfied decisions from the result generated by MOACO. If it fails to do so,

it selects the decisions that result in the least number of violated requirements (line 2-6).

This is because in some cases, the violations are inevitable outcomes due to, e.g., heavy

conflicts amongst the objectives and/or improper settings of the requirements. In such

context, reducing the number of violated requirements takes the highest priority.

Next, we ensure the superiority of decisions by ranking each decision in the set based

on the number of other decisions that pareto-dominate it. Smaller number represent

higher rank of a decision. Thus, we select a subset of decisions that is ranked the highest

in terms of pareto-dominance (line 7-15). Subsequently, by using nash-dominance, the

reduced set is further ranked for fairness. The less a decision is nash-dominated, the

higher the rank is. Likewise, we select a set of decisions that is ranked as the highest

for being nash-dominance (line 16-24). Next, we calculate the reference point and then

search a set of decisions that has the smallest distance to that point (line 25-33). Finally,

we randomly select one decision from the final set; as at this stage, all decisions tend to
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Algorithm 6 Compromise-dominance based trade-offs for autoscaling decisions
Inputs:
given a set of decisions D from Algorithm 5
Declare:
Dselected -the set of selected decisions
di -the ith decision within a set
n -the ranking of nash-dominance
p -the ranking of pareto-dominance
R -the reference point
disi -the distance of the ith decision to the reference point
dissmallest -the smallest distance to the reference point
N -the collection of decisions and their ranks of nash-dominance
P -the collection of decisions and their ranks of pareto-dominance
C -the collection of decisions with smallest distance to the reference point
Outputs:
the set of decisions D for making trade-offs

1: start
2: Dselected = find all satisfied decisions from D
3: if Dselected = ∅ then
4: Dselected := find all decisions that violate the least
5: number of objectives’ requirement from D
6: end if
7: for each di in Dselected do
8: p := 0
9: for each dj in Dselected do

10: if di is pareto-dominated by dj then
11: p := p+1
12: end if
13: end for
14: P := P ∪

〈
di, p

〉
15: end for
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16: Dselected := find the decision(s) with smallest p from P
17: R := find the reference point based on the optimal values
18: for each di in Dselected do
19: n := 0
20: for each dj in Dselected do
21: if di is nash-dominated by dj then
22: n := n+1
23: end if
24: end for
25: N := N ∪

〈
di, n

〉
26: end for
27: Dselected := find the decision(s) with smallest n from N
28: R = find the reference point based on the optimal values
29: for each di in Dselected do
30: disi := the distance between di and R
31: if disi 6 dissmallest then
32: if disi<dissmallest then
33: C := ∅
34: end if
35: dissmallest := disi
36: C := C ∪ di
37: end if
38: end for
39: return randomly selected decision from C
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be equivalent in terms of superiority and fairness. Whenever there is only one decision

left during the process, the algorithm terminates immediately and returns such decision.

7.6 Experiments and Evaluations

We integrate our MOACO and the Compromise-Dominance (CD) mechanism, denoted as

MOACO-CD. To evaluate the proposed approach, we have conducted various quantitative

experiments. The primary goal of these experiments is to validate the effectiveness of our

approach against other state-of-the-art autoscaling approaches in the cloud, these are:

• RULE - A conventional rule-based autoscaling approach that makes decisions us-

ing predefined if-conditions-then-action mapping e.g., [60] [52]. This approach does

not require explicit QoS model as the QoS of a service-instance is assumed to be

sensitive to its own control primitives only, e.g., the CPU and thread of the said

service-instance. Specifically, violations of QoS would increase all the relevant con-

trol primitives to the next higher value; while low utilisation would decrease them

to the next lower value.

• HILL - A more sophisticated autoscaling approach that relies on our QoS modelling

and region controlling techniques, but the decision making process leverages on a

weighted-sum formulation of all the dependent objectives e.g., [10] [95] . Here, the

approach leverages on greedy and heuristic based solution: the random-restart hill-

climbing algorithm for optimisation, in which it starts with an arbitrary decision,

then attempts to find a better decision by incrementally and independently changing

the values of each control primitives in the models. The algorithm terminates when

a maximum iteration has been reached. The best decision, in terms of the weighted-

sum formulation, is returned.

• RANDOM - Another autoscaling approach that is similar to HILL, but instead
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of using hill-climbing, a random optimisation algorithm is applied. This algorithm

randomly changes the values of each related control primitive, and terminates when

it reaches a maximum number of iterations. The best decision is selected as indicated

by the weighted-sum formulation.

• MOGA - A most commonly used multi-objective genetic algorithm derived from

NSGA-II [124] [57] [51]. We have also designed MOGA to benefit from our QoS

mode;ling and region controlling techniques, We configure the optimal population

size and number of iterations through careful profiling on our testbed.

Notably, we have configured the approaches to use the identical number of global

iterations for the worst case. However, to prevent them from completing with arbitrary

latency, we have set a running time threshold (i.e., 75s), which forces the algorithms to

terminate and return the best decision found. For HILL and RANDOM, we normalise

each objective’s result in the weighted-sum of objectives and set all the weights to 1. We

use the following 5 criteria to quantify the comparisons:

1. Coverage of two approaches (C-metric) [143] - this metric performs pairwise

comparison to measure the comparative quality of trade-offs achieved by two ap-

proaches. It is calculated using the number of (relatively) better objectives achieved

by one approach, divided by the total number of considered objectives. Formally,

the C-metric is defined as:

C(A,B) =
|ro,a ∈ A : ro,b ∈ B, ro,a � ro,b|

|X|
s .t ., ro,a =

1

n
×

n∑
i=1

ri,o,a (7.11)

whereby A and B represent two approaches and their corresponding sets of average

objective results for all intervals that are being considered. ro,a and ro,b are the

average results of the oth objective, as achieved by the two approaches; these average
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results are calculated by averaging the objective values for n intervals, as denoted

by ro,a = 1
n
×
∑n

i=1 ri,o,a. |X| is the total number of objectives that we consider.

|ro,a ∈ A : ro,b ∈ B, ro,a � ro,b| counts how many objective results achieved by A are

better than those achieved by B. Intuitively, the C-metric is an effective method

to quantify the quality of trade-offs with respect to the number of the favourable

objectives. The greater the value is, the better the approach is. C(A,B) = 1 means

that the results of all objectives achieved by A are better than those achieved by B.

2. Generational Distance (G-Distance) [123] - this is another intuitive metric

that measures the quality of trade-offs. Unlike the C-metric, G-Distance focuses on

the generational extents to which the objectives are optimised as achieved by an

approach. Formally, it is calculated by:

G−Distance =

√√√√ |X|∑
o=1

(
1

ravg−max
o

× ((
1

n
×

n∑
i=1

ri,o,a)− ravg−besto ))2 (7.12)

where ri,o,a is the result of the oth objective at the ith interval, as achieved by the ath

approach. ravg−besto and ravg−maxo are the best and the max average result (over all

approaches) for the oth objective respectively. Smaller value of G-Distance means

better results. The remaining notations are the same as (13).

3. Violations of Requirements - for each approach, we measure the extent to which

the requirements (i.e., SLA or budget) of an objective are violated, as defined in:

100

n
×

n∑
i=1

vi s .t ., vi =


|ri,o,a−to|

to
if to � ri,o,a

0 otherwise

(7.13)

whereby vi is the extent of violation at the ith interval; to is the requirement thresh-

old for the oth objective, i.e., SLA or budget; and n is the total number of intervals.
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4. Over- and Under-Provisioning - for each approach, we quantify over-/under-

provision by means of the average difference between the provision and demand for

each control primitive type. Formally, the over-provision of a control primitive type

is calculated as:

100

m× n
×

m∑
j=1

n∑
i=1

Ui,j s .t ., Ui,j =


|ui,j−u′i,j|

u′i,j
if ui,j > u′i,j

0 otherwise
(7.14)

where ui,j is the jth VM (for hardware control primitives) or service-instance (for

software control primitives) on a PM. n and m are respectively the number of

intervals and VMs/service-instances. u′i,j is the corresponding demand using the

highest possible value that we have observed. The calculation of under- provision

can be similarly applied.

5. Overhead - Finally, we measure the overhead of each approach in terms of the

latency in making decisions. In particular, we report on the results for both best

and worst case scenarios.

7.6.1 Experiments Setup

We conducted experiments on private cloud using a cluster of PMs, each of which has

Intel i7 2.8GHz Quad Cores and 4GB RAM. The PMs use Xen v3.0.3 [6] as the hypervisor

and the autoscaling process is running on Dom0. To eliminate the interference caused by

Dom0, we allocated one CPU core and 600 MB RAM to it, which tends to be sufficient.

Our approach and the other competitors are implemented using Java JDK 1.6. To simulate

QoS interference caused by the VMs while not exhausting resources, we run three co-

hosted VMs on each PM. Initially, we allocate the same amounts of hardware resources

for each of the co-hosted VMs, these are 30% cap of a dedicated CPU core and 250 MB

RAM. All VMs run linux kernel v2.6.16.29. It is worth noting that the experiments have
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relied on the same testbed as in Chapter 4 and 5.

Our experiments leverage on RUBiS [5], which is a cloud-based application consists

of 26 co-located services using the eBay.com model. For simplicity, we have used three

RUBiS snapshots, each of which consists of a 2-tiers (i.e., application and database tiers)

based RUBiS application. A RUBiS snapshot is deployed with a software stack including

linux kernel v2.6.16.29, Tomcat v6.0.28 and MySQL v3.23.58 on each co-hosted VM of

the master PM. The snapshots use heterogeneous database volume size ranging from

1GB to 5GB data. We have implemented sensors and actuators deployed on each service-

instance/VM for collecting the online data and scaling the control primitives respectively.

In this work, we have realised vertical scaling actions (a.k.a. scale-up/-down) by using

a customised listener on Tomcat and the management module of Xen. As for horizontal

scaling actions (a.k.a. scale-in/-out), we leverage on master-salves based replication. Each

of the three RUBiS snapshots and its replicas are linked to a dedicated load balancer.

Three client emulators are used and they apply read/write pattern to generate requests

for each load balancer. To simulate a realistic workload within the capacity of our testbed,

we vary the number of clients according to the compressed FIFA98 workload [14]. This

setup can generate up to 400 parallel requests, which is large enough to simulate QoS

interference.

7.6.2 QoS Attributes, Primitives and Configurations

For the simplicity of exposition, we have selected commonly used QoS attributes and

primitives in the evaluation. In our experiments, we have used identical setups for all

approaches. As listed in Table 7.2, these QoS attributes and primitives are per-service

except for CPU and memory as they are shared on a VM. Table 7.3 shows the configu-

rations for each control primitive type. Scale-out occurs if the summed max of CPU or

memory for all the co-hosted VM exceeds the PM’s capacity. The hardware and software
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Table 7.2: The Examined QoS Attributes and Cloud Primitives.

QoS and Primitives Description

Output

Response Time (ms) The average leaped time between a service-
instance receives and replies a request.

Throughput (req/min) The average rate of completed requests.
Reliability (%) The percentage of requests that being completed

faster than the SLA. (2-4 ms)
Availability (%) The percentage of time that the average response

time above a threshold. (4 ms)

CP input
CPU (%) Observed average CPU utilisation of a VM.

Memory (MB) Observed average Memory utilisation of a VM.
Thread (no. of req) Observed maximum concurrent threads of a

service-instance. (a modified control knob of Tom-
cat’s maxThread property)

EP input Workload (req/min) Observed average request rate of a service-
instance.

control primitives of a new replica VM and service are set as the initial value i. Likewise,

scale-in occurs if CPU and memory of a VM are provisioned as min, and their utilisa-

tions are below u. By carefully examining the objective-dependency of services based on

our QoS modelling and region clustering approaches, we intend to manage and autoscale

the services that exhibit the most fluctuated performance, and those that are the most

likely to lead to the largest number of dependent objectives in a decision process. We

have identified two services on each RUBiS snapshot while leaving the other 24 services

as unmanaged, generating interference only. Table 7.4 illustrates the SLA and budget

(per interval on a VM) for each managed service-instance. We can see that there are

6 managed service-instance on a PM, each has 5 different objectives. All these setups

give us up to 30 dependent objectives in one decision making process. Table 7.5 is the

configurations for MOACO.

In each experiment run, the sampling and modelling intervals are both 120s with

the total of 70 intervals; and there is one new sample per interval for updating the QoS

models. The autoscaling process is triggered when any violations of SLA or low utilisation
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Table 7.3: Configurations for Each Control Primitive Type.

i u step min max t k p

CPU 30% 50% 1% 15% 40% 70% 10% $0.01
Memory 250MB 50% 5MB 230MB 280MB 70% 10% $0.002
Thread 5 50% 1 4 10 70% 10% $0.017

i = the initial value; u = the lowest possible utilisation for triggering autoscaling; step = the
margin between two neighbour values; min = the minimum value; max = the maximum value; t
= the % threshold to trigger change of the max value; k = the % extent to which the max value
is changed; p = the price per unit per interval for a service-instance.

Table 7.4: SLA and Budget for the Managed Service-Instances. (6 service-instances, each
has 5 objectives)

Response
Time (ms)

Throughput
(req/min)

Reliability
(%)

Availability
(%)

Cost ($)

VM1
Service1 2 180 85 90 1.2
Service2 2 180 85 90 1.1

VM2
Service3 3 150 85 90 1.17
Service4 2 180 85 90 1.33

VM3
Service5 4 140 90 85 1.02
Service6 2 180 90 90 1.17

Table 7.5: Configurations of MOACO.

α β ρ v maxIteration maxAnt maxRun

4 1 0.1 0.5 5 150 100

is detected for one interval. Given that the QoS modelling approach requires certain

historical data to build the models, we record the achieved QoS and cost of all managed

service-instances on the master PM for the rear 50 intervals. We have conducted 10

experiment runs for each approach.

7.6.3 Quality of Trade-offs

To evaluate the quality of trade-offs achieved by our approach, we leverage on the afore-

mentioned C-metric and G-Distance; the results are plotted in Table 7.6. For C-metric,

our MOACO-CD is better than MOGA as the latter is limited in optimising and making
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Table 7.6: Quality of Trade-offs. (the best is highlighted in bold)

Pairwise Comparison C-metric

C(MOACO-CD, MOGA) : C(MOGA, MOACO-CD) 0.8 : 0.2
C(MOACO-CD, RULE) : C(RULE , MOACO-CD) 0.73 : 0.27
C(MOACO-CD,HILL) : C(HILL, MOACO-CD) 0.8 : 0.2

C(MOACO-CD, RANDOM) : C(RANDOM, MOACO-CD) 0.73 : 0.27

MOACO-CD MOGA RANDOM RULE HILL

G-Distance 0.4071 1.2707 0.9407 1.5892 1.6958

trade-off for a large number of objectives; it also does not consider well-compromised

trade-offs. MOACO-CD is better than RULE, which does not allow explicit optimisation

and trade-off. Finally, MOACO-CD is also better than HILL and RANDOM, because

the weighted-sum of objectives in these two has greatly restricted their search into local

areas of the search space, henceforth they tend to be limited in improving the diversity

of trade-offs decisions. As a result, we can conclude that our MOACO-CD is the best

according to C-metric, meaning that it has the best quality of trade-offs in terms of the

number of the favourable objectives.

As for G-Distance, we note that our MOACO-CD again achieves the best result,

producing the best quality of trade-offs in terms of the extents to which the objectives are

optimised. We can see that RANDOM is better than MOGA, RULE and HILL, this is

because even though it is restricted by the weighted-sum of objectives, RANDOM tends

to largely improve on a few objectives and thus leading to second best G-Distance result.

The MOGA is ranked the third, because despite it caters for multi-objective, the inability

to handle large number of objective and the limited diversity have caused it to optimise

only a small amount of objectives. We can also see that the RULE and HILL are the worst

and they exhibit marginal difference. This is because RULE is not capable to perform

explicit trade-offs and optimisation; while HILL is greatly affected by high latency due to

its greedy nature.
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Figure 7.2: Normalised Pair-Wised Comparison Between MOACO-CD and Each of the
Other Approaches. (the larger area means better trade-offs; objective number 1-6 de-
notes Response Time; 7-12 denotes Throughput; 13-18 denotes Reliability; 19-24 denotes
Availability and 25-30 denotes cost)

To provide a detailed view of the achieved QoS and cost values, Figure 7.2 shows pair-

wise comparisons between MOACO-CD and other approaches with respect to each of the

30 objectives that we have considered. For each objective dimension In the figure, a point

that closer to the labeled number means better value for that objective. For example,

the MOACO-CD produce better result on objective number 1 as when compared with

the others. Intuitively, when all 30 objective dimensions are considered, the larger area

that cover by an approach means better quality of trade-off is achieved. We can clearly
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see that in contrast to the other autoscaling approaches, the MOACO-CD covers larger

area. In particular, its decisions tend to be significantly better than those of the others

on most QoS objectives while slightly worse, mainly on the Availability (against MOGA)

or Cost (against RULE, HILL and RANDOM) objectives, which are smaller in number.

This means MOACO-CD favours decisions that largely improve on the majority of the

objectives; while causing smaller degradation to others.

In conclusion, the MOACO-CD produces better trade-offs than the others in terms of

the numbers of favourable objectives and the extents to which they are optimised. This

is because it favours the autoscaling decisions that do not only benefit all the objectives,

but also tend to improve on each individual objective as much as possible. Therefore,

MOACO-CD is capable to perform better optimisation and find trade-offs decisions with

higher diversity for large number of objectives. In addition, the compromise-dominance

balances the improvements in the objectives, which lead to well-compromised trade-offs.

In particular, the possible trade-offs are handled properly, not only for the naturally

conflicted objectives (e.g. Throughput and cost objective of a service); but also for the

conflicts caused by QoS interference.

7.6.4 Violations of Requirements

Next, we examine whether the decisions made by our approach can eliminate runtime

violations of the SLA and budget, as listed in Table 7.4. We use (7.13) to assess the extents

of these violations when they occur. As shown in Table 7.7, violations do exist, mainly for

the Response Time and Throughput objectives. However, we can see that MOACO-CD

leads to significantly smaller violations as when compared with the others—it has the best

results for 12 out of the 13 cases. In contrast, MOGA is ranked the second as it obtains

the second best results for most cases. This proves that MOACO-CD outperforms MOGA

in reducing SLA violations, while optimising and making trade-offs for large number of
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Table 7.7: The Average Violations (%). (the best is highlighted in bold)

MOACO-CD MOGA RULE HILL RANDOM

Service1
Response Time 102.02 190.42 921.62 853.32 259.94

Throughput 10.49 13.45 14.37 14.52 14.26

Service2
Response Time 86.37 316.74 2370.53 434.88 401.09

Throughput 19.15 20.46 21 21.86 21.06

Service3
Response Time 99.52 389.12 405.33 293.55 457.53

Throughput 39.71 39.93 39.79 41.57 40

Service4
Response Time 73.79 614.90 797.53 730.25 617.17

Throughput 19.84 21.33 20.75 21.58 19.86

Service5
Response Time 0 186.71 357.58 676.56 236.49

Throughput 13.06 13.08 13.22 16.48 14.81

Service6
Response Time 16.37 560.74 214.88 2364.84 192.83

Throughput 61.81 61.93 60.18 62.49 62.3
Availability 0 0 0 0.02 0

Standard Deviation 0.52 2.69 6.62 7.55 2.49

objectives. RANDOM is ranked the third while HILL and RULE do not differ much in

terms of the overall violations. In particular, the maximum violation of MOACO-CD is

only 102.02%, which is at least 6 times better than the 2307.53% for RULE, the 2364.84%

for HILL, the 617.17% for RANDOM and the 614.9% for MOGA. We can also see that

MOACO-CD has the smallest standard deviation on the violations for different service-

instances, meaning that violations in MOACO-CD are better balanced than the other

four. This implies that the trade-offs caused by QoS interference are better compromised;

otherwise, it can result in imbalanced scenarios where the QoS attributes of some service-

instances are advantaged while those of the others are severely violated, e.g., the cases

for RULE and HILL.

As a detailed example, Figure 7.3 illustrates the fluctuations of QoS and cost for

Service 6 in one experiment run. For Response Time (Figure 7.3a and 7.3b), we can

clearly see that, in contrast to the others, our MOACO-CD does not only significantly

reduce violations, but also produce better and more stable response time when the SLA is

complied. This is the same case for Throughput (Figure 7.3c). From Figure 7.3d, we can
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Figure 7.3: The Achieved QoS Results and Cost for Service 6 in One Experiment Run.
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Table 7.8: The Over- and Under-Provisioning (%). (the best is highlighted in bold)

MOACO-CD MOGA RULE HILL RANDOM

CPU
Over-provision 6.69 15.09 9.48 20.36 15.07

Under-provision 14.40 9.86 11.82 13.06 9.46

Memory
Over-provision 10.50 10.66 0.52 0.94 3.00

Under-provision 2.21 2.50 19.13 20.40 11.13

Thread
Over-provision 22.29 37.05 21.94 32.38 40.00

Under-provision 22.92 15.55 39.05 27.42 9.30

observe that there are no violations for Reliability. In such case, MOACO-CD does not

only constantly produces the best performance, but also tends to have the most stable

results along the trend: we can clearly see that for the other approaches, the achieved

reliability drops gradually at around 25-30 time step; whereas the results achieved by

MOACO-CD do not fluctuate much. We observe the similar result for Availability (Figure

7.3e). Finally, we can see that the cost incurred by MOACO-CD is similar to MOGA, but

slightly higher than the others (Figure 7.3f); however, the extra cost is within the given

budget and it is therefore acceptable. That is to say, MOACO-CD comes with some extra

costs but it can lead to significantly better performance on many other QoS objectives.

In summary, we can conclude that MOACO-CD performs significantly better than

the other approaches for reducing SLA violations on a large number of objectives. In

addition, it leads to better and more stable results when the SLAs are complied. This

might come with slightly higher cost, yet still comply with the budget requirements. Fur-

ther, MOACO-CD achieves well-balanced improvement on the QoS attributes for different

service-instances, which implies that the trade-offs caused by the QoS interference for both

services and VMs are well compromised, even for large number of objectives.

7.6.5 Over- and Under-Provisioning

We now evaluate the proposed approach by means of the difference between the provision

and demand for each control primitive type. We calculate over- and under-provisioning
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using (7.14). Table 7.8 shows the average results for all managed service-instances and

VMs on the master PM.

For CPU and thread, the results of MOACO-CD do not differ much as when com-

pared to the other four. In addition, the amounts of over-/under-provision are balanced.

Interestingly, for memory, we can see that MOACO-CD and MOGA perform significantly

better than the others on under-provision, but they are the worst on over-provision with

considerable difference. This is because they detect that memory can be the most critical

control primitives that significantly influences the QoSs. Moreover, they have assumed

that some extra costs can lead to significantly better performance on other objectives.

Consequently, both MOACO-CD and MOGA try to avoid under-provisioning by allo-

cating more memory than the actual demand. Indeed, in contrast to MOACO-CD and

MOGA, although the other three have better results on over-provision, their bigger under-

provision have resulted in significantly worse QoS and SLA violations (especially for RULE

and HILL), as evident in Section 6.4. Finally, although MOACO-CD and MOGA obtain

similar results for elasticity, we have shown that MOACO-CD outperforms MOGA on the

quality of trade-offs and the ability to reduce SLA violation and to optimise QoSs.

In conclusion, our approach results in good elasticity, providing that the amounts of

over-/under-provision achieved by MOACO-CD are balanced and acceptable for CPU

and thread. Among the others, MOACO-CD tends to have the best under-provision and

the second worst, yet acceptable over-provision for memory. However, this is a trade-

off between cost and QoS attributes, where the MOACO-CD has assumed that large

improvements on the QoS attributes can be achieved by having slightly more costs, which

are mainly spent on the memory.
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Table 7.9: The Overhead (s). (the best is highlighted in bold)

MOACO-CD MOGA HILL RANDOM

Best case 1.2 12.3 6.8 3.5
Worst case 50.3 69.7 75.09 38.91

7.6.6 Overhead

Finally, we validate the overhead of our approach by computing latency of the decision

making process. Undoubtedly, RULE results in negligible overheads and thus it is omitted

from the comparison. As shown in Table 7.9, we can see that for all four approaches, there

is a considerable difference between the worst case and best case scenarios. Indeed, their

actual overhead can be sensitive to the complexity of the used models (i.e., by the QoS

Modeller); and the number of objectives that are assigned in the same decision making

process (i.e., by the Region Controller). This is also the primary reason why we have

reported on the best/worst case result instead of using the mean value, which can only

provide coarse assessment of the runtime overhead. In contrast, considering results for

extreme cases can provide insightful view for decision making in cloud autoscaling.

For the best case scenario, our MOACO-CD has the smallest overhead (1.2s) while

the HILL has the biggest. However, the results of all four approaches are acceptable.

On the other hand, the RANDOM achieves the smallest overhead (38.91s) in the worst

case scenario; while the MOACO-CD, MOGA and HILL report 50.3s, 69.7s and 75.09s

respectively. Nevertheless, as we have seen in previous sections, the MOACO-CD is

significantly better than RANDOM in terms the quality of trade-offs and its capabilities

in reducing SLA violations. For both cases, MOGA has bigger latency than MOACO-CD

due to the overhead of pareto-dominance sort during optimisation. Another observation

is that HILL is often forced to terminate as it reaches the runtime threshold (i.e., 75s);

thus its actual overhead in the worst case scenario can be bigger than 75.09s. This is the
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main reason that causes its poor performance in the quality of trade-offs and violations.

Overall, MOACO-CD has acceptable overhead even for the worst case, providing that the

sampling interval is 120s.

7.7 Conclusion

The trade-off decision making is undoubtedly a crucial and challenging task for autoscal-

ing in the cloud. In this chapter, we present a self-adaptive approach for autoscaling

decision making in the cloud. In particular, it adaptively resolves the trade-offs with-

out human intervention. By leveraging on MOACO, the approach dynamically searches

and optimises for possible trade-offs with high diversity. Further, we propose compromise-

dominance for adaptively selecting the decision that leads to well-compromised trade-offs.

The experiments show that, in contrast to the rule-based, single-objective heuristic based,

single-objective randomised and MOGA based autoscaling approaches, our approach pro-

duces better trade-offs quality in terms of the numbers of favourable objectives and the

the extents to which they are optimised; and much smaller violations of the requirements

with large number of objectives. Moreover, it results in acceptable overhead and has

balanced elasticity in terms of the over-/under-provision.

By now, we have explored the entire proposed autoscaling framework, not only at

a global level (i.e., Chapter 3), but also at local levels of each important components

with great details (i.e., Chapter 4, 5, 6 and this chapter). In the next chapter, we will

qualitatively evaluate the proposed autoscaling framework against various criteria.
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Chapter 8

Reflection and Appraisal

8.1 Dealing with Dynamics and Uncertainty

In the context of computing systems, dynamic means continuous changes in the system

and the environments. It implies the necessity of self-adaptivity on the system to react

on changes in order to assure some of its properties. Uncertainty, on the other hand, is

a similar, but still different notion of dynamics. It describes the unpredictability of an

object and hence implies the difficulty in realising self-adaptivity on systems.

One can argue that cloud-based services is dynamic but certain in some cases, e.g.,

there is a fluctuated workload but can exhibit strong seasonality. That is to say, the

behaviour of the cloud-based service does change but tend to be predicted to some extent.

In such cases, a simple autoscaling system might be a working solution providing that

the cloud-based services has undergone a formal profiling process and can be adaptive

in response to the changes. However, most commonly, the behaviour of the cloud-based

service can exhibit both dynamics and uncertainty, e.g., unexpected spike on workload

and QoS interference. In this case, ensuring effective self-adaptivity when designing the

autoscaling system becomes mere difficult due to the unpredictability. This thesis provides

explicit treatment for scenarios that exhibit both dynamics and uncertainties.
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We intend to evaluate how the dynamics and uncertainties of cloud-based services are

captured and handled by the proposed autoscaling framework. As we have discussed in

previous chapters, dynamics and uncertainty are the fundamental factor in cloud environ-

ment and such nature implies that it is hard to presume the QoS performance and cost of

cloud-based services. The dynamics and uncertainties can be associated with many factors

in cloud autoscaling, including QoS sensitivity, QoS interference, the effects of granularity

of control on the global benefit, the effects of decision on objectives and the trade-offs.

The proposed autoscaling framework, through using the principle of self-awareness and

the related algorithms, have been explicitly designed to cope with those factors.

• Dynamics and uncertainties in QoS modelling

– We have designed a self-aware and self-adaptive QoS modelling approach, which

continually learns the knowledge about the significant inputs of QoS models,

the magnitude of these inputs, and QoS interference. As the knowledge changes

in an uncertain manner, the modelling process can dynamically acquire such

knowledge and adapt the expression of the QoS models accordingly.

• Dynamics and uncertainties in granularity of control

– We have used a self-aware and self-adaptive region clustering approach that

continually learns the knowledge about the effects of granularity of control on

the global benefit and deployment of cloud-based services. In the events of

unpredictable and uncertain changes, the approach can aware of when and

which regions to adapt because of its ability of acquiring the knowledge.

• Dynamics and uncertainties in decision making

– We proposed a self-aware and self-adaptive autoscaling decision making ap-

proach to continually learn the knowledge regarding the effects of decision on
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objectives and the possible trade-offs, which can be caused by both naturally

conflicted objectives and QoS interference. The decision making process is ca-

pable to adapt its own behaviours according to the changing knowledge, which

is uncertain in nature. In such a way, we aim to adaptively reach the optimal

(or near-optimal) decision that achieve well-compromised trade-offs.

Collectively, the previous points lead to a self-aware and self-adaptive autoscaling

system, which can handle different forms of dynamics and uncertainties that exhibited by

cloud-based services, as we have quantitatively analysed in previous chapters. Therefore,

the QoS and cost objective of all cloud-based services can be continually optimised and

thus their requirements are better complied, which leads to better elasticity.

8.2 Scalability

Scalability refers to the ability of a system to accommodate the growth of data, processes

and workload etc. In the context of self-aware and self-adaptive autoscaling system, we

are particularly interested in the scalability of the approach with respect to the increasing

amount of historical data, the number of cloud primitives, the number of cloud-based

services and their objectives.

• Scalability with respect to the amount of historical data

– The amount of historical data influence the overhead of the self-aware and self-

adaptive QoS modelling. One way to improve scalability is to include only the

most significant inputs in the QoS models, as we have achieved in the primitives

selection phase. By limiting the inputs in the models, we significantly reduce

the training time required for QoS function training because there is less effects

caused by the increasing amount of historical data. We have shown that such

design also leads to better model accuracy.
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– However, although we can limit the inputs for QoS model, the actual amount

of historical data does not change and hence they can become extremely large

as time goes by. This may not be a major issue for primitives selection pro-

cess given that the calculation of cumulative relevance and redundancy is very

efficient; but it can be a bottleneck for the QoS function training. Therefore a

forgotten strategy is desired when there is no need to take too much data into

account. To achieve such goal, one could set a threshold to the maximum num-

ber of historical intervals to be recorded. Once such threshold is exceeded, the

QoS function training process can apply cross-validation to examine if dropping

data from the oldest intervals would affect the model accuracy. For example, if

the reduction in accuracy is less than 1% error then such data can be removed.

• Scalability with respect to the number of cloud primitives

– For self-aware and self-adaptive QoS modelling, the increasing number of cloud

primitive can be accommodated by the primitives selection phase, which en-

sures only the significant primitives are used as inputs. This is achieved by

the proposed hybrid-learners approach for primitives selection, where the core

is an optimisation for information relevance and redundancy. Increasing the

number of primitives can enlarge the search space for primitives selection. To

this end, in this thesis, we have applied an efficient randomised optimisation

algorithm to this problem, but more sophisticated algorithms can be applied

when there is a need. As for the QoS function training process, the primitives

selection phase have ensured a less but more useful number of primitives in the

model, which have presumably improve the efficiency of the machine learning

algorithms in training and calculation of the model.

– The number of cloud primitives can affect the scalability of the self-aware and
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self-adaptive region clustering approach, which is used to determine the gran-

ularity of control. However, since the approach performs clustering in a linear

manner, the correlation between the overhead and the number of primitives is

also linear.

– The search space in autoscaling decision making increases dramatically when

the number of cloud primitives increases. However, one of the benefits of

the proposed MOACO is that it can efficiently resolve NP-hard problems and

achieve good results by exploring in diversified parts of the search space, lead-

ing to less effort on computation. In the decision making for cloud autoscaling,

the search space consists of
∏n

i=1 ci possible decisions, whereby ci is the num-

ber of configured value for the ith control primitives; n is the total number

of control primitives for all dependent objectives. MOACO only need to ex-

amine
∑n

i=1 ci + i · a · r decisions in the worst case, where i, a and r are the

number of iteration, the number of ants and the number of runs for an ant

to find satisfactory decision, respectively. In particular,
∑n

i=1 ci decisions are

searched when calculating the heuristics information while the remaining i ·a ·r

decisions are examined when updating the pheromones, which is an iterative

process throughout the algorithm. Taking the initial setup of the experiment

in Chapter 7 as an example, the complete search space has 7.29×1011 decisions

while MOACO at most need to examine 7.5141 × 104, which is only around

1.02× 10−5% of the search space.

• Scalability with respect to the number of cloud-based services and their

objectives

– Increasing the number of cloud-based services and their objectives can cause

larger overhead for the self-aware and self-adaptive modelling process on the
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root domain (e.g., Dom0). However, we believe that such computational re-

quirements can be fulfilled by modern physical machines. In addition, it is also

possible to setup dedicated machine(s) for QoS modelling process. Finally,

applying admission control, which restricts the number of services on a PM,

can be another possible solution. As for the self-aware and self-adaptive region

clustering approach for granularity of control, its scalability tends to be linear

to the number of cloud-based services and their objectives.

– The scalability of self-aware and self-adaptive decision making approach is

related to the number of dependent objectives, thus it can work in large number

of services. This is because increasing the number of services may not influence

the approach, as the region clustering approach distributes the independent

objectives of these services into different decision making processes, which run

independently. In other words, a large number of service may not affect the

decision making as long as the number of dependent objectives in a process

does not change significantly. If it is known that the number of dependent

objective will be largely increased, there are additional mechanisms to improve

scalability, e.g., by using admission control to restrict the number of service

on a VM and the VMs on a PM, which will limit the number of dependent

objectives in one process. However, in cases the additional mechanisms are

not applicable, the proposed decision making approach can still be tuned the

configurations of MOACO. This can be achieved by profiling with respect to

the possible number of dependent objectives. It is worth noting that since we

consider the trade-offs caused by QoS interference, we have evaluated up to 30

objectives in one decision making process, which itself is a significantly larger

scale as when compared to the small scale (e.g., 2 - 4 objectives) in existing

work.
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– In particular, our compromise-dominance has similar runtime complexity to the

pareto-dominance based sort in NSGA-II, but with some extra overheads on

nash-dominance and distance of decisions. However, unlike NSGA-II that sorts

in each iteration during the optimisation, we only need to run compromise-

dominance once after the optimisation of MOACO completes.

8.3 Flexibility

By flexibility, we refer the ability of the autoscaling system to cope with the various het-

erogeneous scenarios and to incorporate future requirements. In this thesis, the proposed

autoscaling framework is designed in a way that aims for the maximal generality. In

particular, flexibility can be discussed with respect to the following:

• The framework does not bound to a specific scenarios, environment or cloud vendor.

• We have used control primitives and QoS to refer to the control knobs and quality

indicator respectively. Therefore, we do not restrict to any assumptions on these

elements.

• The framework promotes flexibility in the way that it can support various architec-

tural styles for the cloud-based services and their requirements.

• The multi-learners approach for QoS modelling can be extended to have more candi-

date learning algorithms for accuracy, or can be shrinked to less number of learners

for efficiency.

8.4 Complexity of Application

Conventional autoscaling system requires to define the right conditions and actions map-

ping. However, by introducing the principle of self-awareness and the related algorithms,
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these mapping are no longer needed without compromising the effectiveness in our au-

toscaling system. These observations are evident by various experiments, as we have

shown in earlier Chapters.

In our framework, apart from the general configuration of the underlying algorithms,

the only offline domain knowledge required are the QoS attributes, cost models, cloud

primitives, services and their requirements (i.e., SLA and budget). The domain knowledge

is often required to be setup once, it then can be easily maintained and updated online

in an automatic manner. This eliminates the need for heavy human intervention, which

is can be complex and error-prone.

However, to better ensure the quality of autoscaling, the following offline decisions

need to be made for extreme scenarios, e.g., time-critical cloud-based services.

• The self-aware and self-adaptive QoS modelling approach runs periodically in order

to capture dynamic QoS sensitivity. Generally, setting the frequency level to minute

interval is the common practice for many cloud-based services (e.g., [90] [105] [87]).

However, in some extreme scenarios (e.g., real-time critical cloud-based services),

if the modelling is too frequent, this may entail large demand on resources for

computing the model. In addition, model training may not be completed within its

interval. In contrast, too low frequency may fail to capture the actual and evolving

diversity of QoS. Consequently, arriving on the right frequency encompasses a trade-

off between efficiency and accuracy. The right frequency level can be determined by

analysing the characteristics of cloud-based service and or empirically deciding on

the frequency level.

• We observed that in some cases when Dom0 suffers contention, the performance of

the QoS modelling approach could become worse. However, this can be eliminated

by determining the proper amount of provision for Dom0 offline. In the real-world

cases, it is still possible to follow the same approach. More precisely, the cloud
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provider can specify the required computational resources for Dom0 in relation to

the total number of service-instances on each PM type. This can be achieved offline

by running dummy applications or using historical data. Such decision may influence

the VM to PM consolidation strategy, which is out of the scope of this thesis.

• As mentioned, the MOACO can be tuned to improve the quality of optimisation in

the decision making process. This can be easily achieved through profiling taking

into account the possible number of dependent objectives. In particular, a set of

configurations can be applicable for a range types of cloud-based services, providing

that they exhibit similar characteristics.

8.5 Practical Deployment

Practical deployment is concerned with how difficult the proposed framework can be used

in a real world scenarios, and what are the possible ways of deploying the framework in

a running cloud environment. Intuitively from Chapter 3, the proposed self-aware and

self-adaptive autoscaling framework is designed in a way that it can be seamlessly and

transparently deployed on a given cloud scenario. Practically, we strive to enable the

maximum flexibility of the framework, that is to say, it can be either fully deployed to

form a standalone autoscaling system or be partially deployed to consolidate existing

autoscaling system using only one (or more) of the inclusive components. An example

of the scenario where the framework is used as a standalone system has been shown in

Figure 8.1.

As we have demonstrated in previous chapters, the self-aware autoscaling system can

acquire the necessary runtime knowledge and adapt itself to dynamically optimise the

QoS and cost for all cloud-based services, which would eventually lead to better elasticity

in the cloud.
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Figure 8.1: The Full Deployment Style of Self-Aware and Self-Adaptive Autoscaling
Framework.

There are scenarios where it is difficult to replace the entire autoscaling system due

to the transition to self-aware autoscaling is too complex and expensive. For example,

suppose that there is a legacy autoscaling system running in the cloud and that the

system is currently working fine but require expensive human intervention to maintain.

However, it might require a large labour cost in order to replace the system with our

self-aware autoscaling framework. In addition, the capacity of cloud infrastructure is

rather restricted and thus there is limited additional resources for fully realising self-aware

autoscaling. As a result, one solution is to take partial components from our framework
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and attach them to replace only certain components from the existing system. This is

possible as the contributions of this thesis are associated with different independent and

internal selves, which are designed as seamlessly connected self-aware components. Two

concrete examples are illustrated in Figure 8.2 and 8.3.

As shown in Figure 8.2, the QoS Modeller is used to consolidate a simple exhaustive

search algorithm for autoscaling decision making. Although such approach may be limited

in reasoning about trade-offs, the improved QoS models can still help to improve the

decision making by providing more accurate assurance about the effects of decision on

objectives. In Figure 8.3, we show another example where the Decision Maker is used

in conjunction with an analytical modelling approach. In such case, although the QoS

models may not be sufficiently accurate, the decision making process can still make the

best effort to resolve the trade-offs, and produce the decisions that tend to achieve well-

compromised trade-offs.

In summary, we have reviewed the proposed framework and some of the important

factors that might affect its effectiveness. We have identified some limitations and dis-

cussed the potential solutions to them. Some of those solutions can lead to interesting

directions of future work, as we will discuss in the next Chapter.
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Figure 8.2: The Partial Deployment Style of Self-Aware and Self-Adaptive Autoscaling
Framework Containing Only QoS Modeller.
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Figure 8.3: The Partial Deployment Style of Self-Aware and Self-Adaptive Autoscaling
Framework Containing Only Decision Maker.
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Chapter 9
Conclusion Remarks and Future

Directions

9.1 How the Research Questions are Addressed

This thesis is driven by numbers of research questions as we have discussed in Chapter

1. In the following, we systematically review how these research questions are addressed

throughout the thesis, as summarised in Table 9.1.

Table 9.1: Summary on How the Research Questions are Addressed

RQ 1.1. How to incorporate and map the self-awareness capabilities to autoscaling in
the cloud?

• In Chapter 3, we have systematically mapped the key components in autoscaling
to different self-awareness capabilities, which is considered at different levels, e.g.,
time-awareness etc. The mapping provides a concise understanding about how self-
awareness can be applied to resolve the challenges for autoscaling in the cloud.
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RQ 1.2. How to architect self-aware autoscaling system? What are the benefits we can
expect from this enriched architecture?

• Drawing on the mapping between self-awareness and cloud autoscaling, the au-
toscaling architecture has been enriched with self-awareness capabilities. The map-
ping posses high intuition on what are the required level of knowledge at a given
logical aspect of the system (e.g., QoS modelling), as we have shown in Chapter 3.
This information leads to better design and selection of the underlying algorithms
and techniques to enable self-awareness.

The key benefit of the self-aware autoscaling architecture is that it realises bi-
directional adaptation. That is to say, it is not only able to adapt the underlying
cloud-based services and VMs, but also capable to further consolidate itself by acquir-
ing the knowledge about itself and the environment through different self-awareness
capabilities. Such consolidations aim for more accurate QoS models, better granu-
larity of control and better trade-off decisions.

RQ 2.1. How to dynamically select the important, yet uncertain cloud primitives (e.g.,
software configurations, hardware resources and environmental conditions) when mod-
elling the QoS for cloud-based services? Which cloud primitive tend to be significant
while which are the irrelevant ones? When these cloud primitives should be considered
in the models?

• In Chapter 4 and 5, we have quantified the relative importance and significance
of primitives to QoS attributes using symmetric uncertainty. We have conducted
an in-depth analysis on the correlations between selected cloud primitives and the
model accuracy; the results suggest that in general, the direct primitives (i.e., those
that directly influence the QoS) tend to be more relevant than the indirect ones
(those that only provide information about QoS interference). However, we found
no evidence that can tell what dimensions of primitives tends can be constantly
significant or at what point in time they can be significant. Instead, the important
primitives affecting QoS tend to be dynamic and uncertain.

Therefore, we propose a self-aware and self-adaptive technique, namely hybrid dual-
learners, to determine which and when the cloud primitives correlates with the QoS
on the fly using information theory [130]. The experiments result show that it can
improve the overall accuracy and achieves better stability.
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RQ 2.2. How to dynamically model and quantify the uncertain magnitude of cloud
primitives in the correlation?

• In Chapter 4 and 5, we have demonstrated that machine learning algorithms
renders themselves neat solution to this problem. We show, by means of experimental
evaluations, that they are capable to produce effective QoS models. However, we have
also found that there is no single learning algorithms that can constantly outperform
the others across a range of possible scenarios.

RQ 2.3. How to incorporate dynamic and uncertain information about QoS interference
into the models?

• In Chapter 5, we have codified two classes of QoS interference at both service
and VM levels. Given the flexibility of the proposed QoS modelling approach, infor-
mation about interference can be Incorporated into the models by using the related
primitives as inputs. The hybrid dual-learners in primitives selection phases would
filter those that are not significant while only keeping the important ones.

RQ 2.4. How to ensure the accuracy of the QoS models?

• In Chapter 5, we have considered both information relevance and redundancy
when selecting the cloud primitives as model inputs. This design, as we have demon-
strated in Chapter 5, leads to better accuracy and stability while keeping the model
complexity adequate. In addition, we have used a self-aware and self-adaptive solu-
tion,namely adaptive multi-learners, to dynamically model how the cloud primitives
correlates with the QoS. The proposed solution can continually guarantee accuracy
models by selecting the best learning algorithm and its resulted model during pre-
diction in cloud.

RQ 3.1. What are the effects of control granularity on globally-optimal result (i.e.,
result with respect to QoS and cost of all cloud-based services) and the overhead in
cloud?

• In Chapter 6, we have shown that a coarse granularity of control in cloud au-
toscaling (e.g., cloud level) can lead to global benefit, but the overhead is likely to
be high. On the other hand, finer granularity (e.g., service level) reduces the over-
head as it usually assume local optimum, however, multiple local optimum may not
necessarily imply a globally-optimal benefit.
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RQ 3.2. Whether local control (e.g., service level) can achieve similar global benefit to
the global control (e.g., cloud level)?

• In Chapter 6, we have demonstrated that local control can indeed achieve similar
global benefit to the global control, as long as the granularity is divided according
to the dependency of objectives. That is to say, multiple local optimums can lead to
global optimum if there is no dependency between different local optimums.

RQ 3.3. How to handle the dynamics and uncertainty associated with the granularity
of control in cloud?

• In Chapter 6, we have used a self-aware and self-adaptive reigning mechanism that
dynamically determine the granularity of control through knowing which and how
many objectives need to be considered in the same decision making process. Each
of the resulted region is regarded as independent decision making process, and they
can run simultaneously. The quantitative results show that the approach achieves
global optimum (or near-optimum) while reducing the overhead of autoscaling.

RQ 4.1. How to dynamically search for the uncertain trade-off decisions, considering
the naturally conflicted objectives and QoS interference?

• In Chapter 7, we have formulated the decision making problem as a discrete
multi-objective optimisation problem, where the aim is to search for the decisions
that optimise different objectives subject to SLA and budget constraints. Given that
the possible decisions can form a incredibly large space, this problem is essentially
NP-hard. Therefore, we have leveraged on metaherustic algorithm, which is often
dynamic and suitable for runtime scenario, to achieve near-optimal solution within
polynomial time. Since the QoS models contain information about QoS interfer-
ence, the decision making process can also handle the trade-offs caused by the QoS
interferences.
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RQ 4.2. How to dynamically reason about the effects of decisions on QoS and cost
objectives, and the uncertain trade-offs considering their requirements?

• In Chapter 7, we have proposed a self-aware and self-adaptive decision making
approach enabled by Multi-Objective Ant Colony Optimisation (MOACO), which is
designed to reason about and optimise the possible trade-offs decisions for autoscal-
ing in the cloud. This approach eliminates the need for specifying weights in the
objective formulation and capable to handle trade-off caused by naturally conflicted
objectives and QoS interference. MOACO can explore more trade-offs information
than the rule, single objective and weighted-sum objectives based decision making
approaches. In particular, MOACO distincts from the existing MOGA based ap-
proach in the sense that, instead of evaluating the overall quality of decisions for all
the objectives during the optimisation, it performs in a way that similar to conduct
many single objective optimisations in one run by using aggregative heuristics and
different pheromone structures. This design aims for better optimality and diversity
for a large number of objectives. Experiments result suggest that, as when com-
pared with state-of-the-art approaches, the MOACO achieves significantly smaller
SLA violation and leads to better, more stable QoS performance even when the
requirements are complied; while the overhead is still acceptable.

RQ 4.3. How to quantify the extent of compromises in the trade-off? How to dynam-
ically determine the well-compromised trade-off?

• In Chapter 7, we design a dynamic triple mechanism, namely compromise-
dominance, for finding well-compromised trade-offs based on superiority and fairness
of the decisions. The former is measured by pareto-dominance [67], and the latter is
achieved via nash-dominance [108] and the distance of decision measurement. The
mechanism is a sequential process where a set of decisions is filtered based on their
superiority, and then the fairness. Eventually, the resulted set contains the decisions
that achieve well-compromised trade-offs. Experimentally, we have shown that it
helps to achieve better quality of trade-offs in terms of both the number of objec-
tive favoured and the extents to which they are optimised. Notably, by separating
MOACO and compromise-dominance, the MOACO is encouraged to explore more
information about the trade-offs surface while saving computational efforts.

Recall that the main research question of this thesis is:

How can self-awareness and the related algorithms be incorporated into the

process of elastically autoscaling cloud-based services, such that the autoscal-

ing system is able to handle runtime dynamics, uncertainties and trade-offs
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exhibited in the cloud? What are the benefits of self-awareness and to what

extent can it be beneficial, when compared to approaches with no or limited

self-awareness?

Clearly, the developments of the aforementioned research questions have converged to-

wards the answer of the first half question. The second half question has been addressed

through various experimental and quantitative analysis as we discussed in previous chap-

ters. In particular, the key benefit of introducing self-awareness in cloud autoscaling is the

ability to handle dynamics, uncertainty and heterogeneity in cloud without heavy human

intervention and design time knowledge. Further, we have demonstrated that in contrast

to state-of-the-art approaches that have no or limited self-awareness, the improvements

in self-aware autoscaling are vast, including more accurate QoS models, better stability of

the models against different QoS trends, achieving global optimum with reduced overhead,

better quality of trade-offs and better compliance of SLA and budget requirements.

Although we have showed that the overhead associated with self-awareness tends to

be acceptable, it is still more computationally expensive than some existing approaches

(e.g., rule-based autoscaling). Indeed, there is always a trade-offs between the benefits that

self-awareness bring to autoscaling and the extra overhead that it introduces. However,

we believe that given the increasingly complex cloud computing environment, making

autoscaling self-aware will eventually become an inevitable requirement as it has many

potentials to fully unlock the elastic nature of cloud.

9.2 Future Directions

This thesis reveals several future directions to further consolidate the effectiveness of cloud

autoscaling. They are described as below:
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9.2.1 Incorporating Workload and Demand Prediction with QoS
Modelling in the Cloud

As we have mentioned in Chapter 4 and 5 , QoS modelling offers the fundamentals to

reason about the effects of autoscaling decisions and the related trade-offs. Although

the QoS models can be used to enable proactive autoscaling, it does not capture the

patterns and seasonality related to the workload and demand fluctuations. To this end,

demand and workload prediction can be combined with QoS modelling for more accurate,

proactive autoscaling.

In addition, incorporating demand and workload prediction can be helpful to reason

about whether the autoscaling decision making process should be triggered, and hence-

forth achieving better sustainability and stability in cloud. This is because in certain

cases, the benefits grained by autoscaling is not significant compared with its compu-

tational overhead, especially when the spiked changes in the environment are extremely

short-term. There has been autoscaling system that relied on workload and demand pre-

diction, e.g., [88], but they rarely combine them with QoS modelling. We advocate that

self-awareness can provide useful insights on how to reason about whether the demand

and workload prediction are necessary, and what are the added values in addition to the

QoS models.

9.2.2 Considering Delays of Scaling Actions

Vertical scaling can be achieved with negligible delays, but horizontal scaling often incur

larger overhead. Therefore, considering delays in horizontal scaling can further improve

the effectiveness of autoscaling. Considering the delays also arise an interesting trade-offs

between horizontal and vertical scaling when autoscaling decisions have been made. In

this thesis, we have assumed that vertical scaling takes higher priority than the horizontal

scaling and the possible configured values are within a range, which is gradually updated.

This design aims to handle majority of the cloud scenarios where there is a clear transition
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when the environment and demand changes. However, in case there is extremely large and

sudden changes in the demand, such design may obstruct the self-adaptivity of autoscaling

system, since it is often more preferable to go directly to horizontal scaling.

Future research can combine the reasoning about delays of scaling action with the

autoscaling decision making process, or alternatively, separate such reasoning based upon

the identified decision. This can be better tackled through self-awareness.

9.2.3 Combining VM consolidation and Cloud Autoscaling

VM consolidation in the cloud studies the problems of mapping between VMs and PM,

as well as the co-hosted VMs. Often, these problems assume that the autoscaling decision

has been provided or can be easily obtained by simple profiling process. Clearly, VM con-

solidation is related to horizontal scaling and it plays an integrals role to the VM-level QoS

interference. We believe that, in order to improve the effectiveness of autoscaling, future

research for VM consolidation problems, notably their interaction with cloud autoscaling,

are necessary.

9.2.4 Autoscaling with Cloud Federation

This thesis has explicitly focused on single cloud scenarios, in which we assume that the

capacity of cloud is able to handle the full demand of cloud-based services. However, de-

pending on the scale and evolving reputation of the cloud provider, it may be inevitable

for switching to alternative cloud providers with larger scale and better reputations. The

selection of cloud providers problem has been widely studied, however the linkage be-

tween cloud autoscaling and cloud providers selection is remain unclear. Future research

should focus on the challenge about how to dynamically reason about when it is needed

to scale across multiple cloud providers, instead of autoscaling within the existing one.

Investigating how self-awareness can be useful for this problem, especially in the context

of cloud market where there is an even larger degree of heterogeneity, is an interesting

starting point.
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9.2.5 Handling Energy Consumption and Economic Profit

Energy consumption is becoming an increasingly important topic for cloud computing.

Although not directly resolving energy consumption, this thesis preserves a foundations

for achieving energy aware autoscaling. This is because the flexibility of the proposed

QoS and cost models, which is often correlated with the required energy. Nevertheless,

further studies are required, particularly for modelling the correlation between cost and

the consumed energy.

Another interesting future direction is to perform cloud autoscaling with the aim to

maximising economic profit of the service providers and cloud providers. This problems

can be studied from an economic perspective, where both the buyers (service providers)

and seller (cloud providers) aim to optimise their own profit. The challenge for future

researches would be how to resolve the trade-off between buyers’ profits and that of

the seller in such a way that a global economic equilibrium is reached. Achieving self-

awareness from an prospective of economic efficiency can be a promising solution.

9.3 Closing Remarks

This thesis makes a novel and timely contribution to the field of cloud autoscaling by

presenting a self-aware and self-adaptive autoscaling framework. The thesis provides in-

depth study and solutions that use the principles of self-awareness and related algorithms

to the problems in the absence of closely related work. We believe that the proposed

framework can provide many useful insights on how to better engineer self-aware cloud

autoscaling system in relation to the architecture, QoS modelling, granularity of control

and decision making. The conducted experiments demonstrate the effectiveness of the

framework in handling dynamics, uncertainty, QoS interference and trade-offs that are

associated with the autoscaling process. The contributions of this thesis have elaborated

on different aspects, including software and systems modelling, software architecture and

decision making and planning, which eventually advances the understanding of using self-
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awareness in cloud autoscaling. We hope that our results will motivate further research

for more intelligent cloud autoscaling and its interaction with the other problems in the

cloud.
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Appendix A
Specification and Examples of

Self-Aware Patterns

The self-awareness capabilities describe the different types of self-knowledge which a sys-
tem may possess and learn. Subsequently, the presence of these different types of knowl-
edge may lead to different classes of behaviours being possible. This categorisation of
self-awareness capabilities as patterns has the possibility to ensure that, when design-
ing self-aware systems, only relevant types of knowledge are included, and their inclusion
justified by identified benefits. There is no need for a system to become unnecessarily com-
plex, learning and maintaining knowledge which does nothing to advance the outcomes
for that system, generating only overhead. Consequently, design process for self-aware
systems will need to take account of the necessity or otherwise of different capabilities of
self-awareness. The pattern notation is depicted in Figure A.1.

Two types of connectors are used to express the logical and physical interactions.
physical connector means there is a direct interaction between two or more capabilities
(from the same or different node), and each capability is required to directly interact
with the others. Notably, physical connector (between different levels of awareness), or
the red arrow, particularly refers to the interactions for the self-awareness of different
types (e.g., goal and time awareness); in contrast, the other black solid arrows represent
the interactions for the self-awareness of the same type (e.g., the interaction-awareness
from different nodes). On the other hand, the logical connector does not require direct
interaction, but rather the data or control in the interaction is sent/received through the
other capabilities (e.g., Sensors and Actuators), which have the physical connector. For
instance, self-expression might be logically required to reach consensus amongst different
nodes, but such interaction is physically realised through Sensors and Actuators. The
benefit of additionally introducing the logical connector is that, when design a self-aware
capability where the communication protocol (e.g., local/remote function call, multi-cast
and broadcast etc) is not needed, the pattern can still show that such capability needs
to interact with the others. Thus, this provides the designers with a more precise view
about the architecture.

We have used multiplicity operator to represents how many capabilities and their
components (a capability can be realised in one or more components), including those
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Physical connector (data)

self-aware 

capability

Mul_Op Mul_Op

Logical connector

Mul_Op: *, 1, or 0

Physical connector for 

different levels of awareness 

Physical connector (control)

I.S. – internal sensor, I.A. – internal actuator

E.S. – external sensor, E.A. – external actuator

S.E. – self-expression, In. A. – interaction awareness

T.A. – time-awareness, G.A. – goal-awareness

M.S.A – meta-self-awareness   

S.A – stimulus-awareness

Figure A.1: The Notations for Self-Aware Patterns.

from different nodes, are involved in the interaction.There are three types of multiplicity
operators (mul op):

• * expresses that the number of capability of the same type in the interaction is
restricted to at least one.

• 1 indicates that one and only one capability of the same type is permitted.

• 0 indicates that zero, one or many of the type specified is permitted in the interac-
tion.

It is worth noting that when the operator is 0, it means that the associated interaction can
be removed but does not represent that the corresponding capability can be eliminated. In
case a capability is interact with itself, e.g., a * on both sides of the intra-capability arrow
of a capability means that it can interact with the same capability implemented in other
nodes. To better clarify the operators, suppose that there is a physical interaction between
stimulus awareness and external sensors where the stimulus awareness is associated with 1
whereas the external sensors is associated *. This means that within the interaction, only
one stimulus awareness is permitted whereas the number of external sensors presented in
the interaction needs to be one or many. Other multiplicity arrangements can be similarly
interpreted.

In the following, we briefly discuss two patterns as examples, full details and the other
patterns can be found in our handbook [39].

• Coordinated Decision-Making Pattern

Decisions made by individual self-aware nodes in a group may be suboptimal due
to their limited view of the system and its operating environment. In applications
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Figure A.2: Coordinated Decision-making Pattern.

requiring near-optimal and consistent global decision making in a cooperative set-
ting, a more advanced architectural pattern may be required. In particular, such a
pattern should make it possible for nodes to synchronise their adaptation actions.

The coordinated decision-making pattern provides a means of coordinating actions
of multiple, interconnected self-aware nodes. Figure A.2 shows this pattern. It
differs from the basic pattern in that self-expressive nodes are linked to one another,
such that they are able to agree on what action to take. It is clear to see that the
coordinated decision-making pattern is a related pattern to the basic information
sharing pattern as they only differ on the self-expression capability. However, they
are designed to aim for different problems and forces, therefore such separation of
concepts paves a better way in pattern selection. The downside of this pattern is
that although nodes are able to form clusters and cooperate on what action to take,
they are unable to decide the timing of such actions, i.e. when to act.

• Temporal Goal Aware Pattern

The knowledge of goals and time might not necessarily to be shared amongst nodes,
especially in cases where the optimisation of local goals could lead to acceptable
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Figure A.3: Temporal Goal Aware Pattern.

global optimum. As a result, the presence of interaction awareness capability could
cause extra overhead on the system. As shown in figure A.3 the temporal goal aware
pattern solves this problem by removing the interaction awareness capability. In this
pattern, there is no notion of ’sharing’ as the nodes are not aware of any interactions
and therefore not aware of the presence of the other nodes. It is worth noting that
the absence of interaction awareness does not mean there is no interaction - nodes
and the environment could still interact with each other, but the nodes are not
aware of it.

The removal of interaction awareness implies that the nodes could be in inconsistent
state. The designer should carefully verify that such situation would not result in
violations of system requirements. In addition, the self-expression capability could
not use any information from other nodes when making decisions.

Meta-self-awareness is useful for managing the trade-off between various levels of
self-awareness and for modifying goals at run-time. Since reasoning at the meta level
is considered an advanced form of awareness that may be beneficial or necessary in
some contexts, we endorse meta-self-awareness as an optional capability for each
pattern and this provides the designer with better flexibility.
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Appendix B
Analysing the Effects of
Cumulative Relevance and

Redundancy in Selected Primitives
to QoS Model Accuracy

To verify whether the Assumption 5.1 is valid for the case of QoS modelling in the cloud,
we have conducted a set of analytical experiments to evaluate how the accuracy changes
with respect to the changes of cumulative relevance and redundancy. In particular, while
keeping the total number of primitives and services unchanged, we gradually add more
relevant primitives as the selected inputs (from higher relevance to lower relevance) to the
modelling process. For each set of selected primitives, the model accuracy and cumulative
values are calculated by averaging the results from all 350 intervals in one run. We have
used all the three learning algorithms (i.e., ANN, ARMAX and RT) and assessed the
accuracy using SMAPE [58], calculated as shown in (4.9). It has been shown that SMAPE
is intuitive, stable and more resilient to outliers than the other metrics [100].

We now explain the process of analysis in details by referring an example to simplify
the exposition. In particular, we report on the Response Time of a service- instance, but
similar results have been observed on many other instances. To avoid noise caused by the
irrelevant primitives, we have considered only relevant primitives in the analysis. Figure
B.1 shows how the accuracy tends to change with the cumulative distribution of selected
primitives in the modelling. Figure B.2 expresses the changes of the cumulative average
of relevance (dash line) and redundancy (solid line) as the number of selected primitives
increases. Similarly, Figure B.3 shows the changes of the cumulative total of relevance and
redundancy with respect to the number of selected primitives. It is worth noting that,
it can be hard to interpret the cumulative relevance and redundancy using cumulative
total, as they are on significantly different scales, especially when the number of selected
primitives increase. Therefore, we have normalised the data in the way that the scales of
both values are in the range between 0 and 1.

We initiate the process by adding the direct primitives before the indirect ones as the
former can be relatively smaller in size, which causing minimal noise when the number of
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Figure B.1: The Fluctuation on Model Accuracy as the Number of Selected Primitives
Increase.
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Figure B.2: The Fluctuation on Average Cumulative Relevance and Redundancy as the
Number of Selected Primitives Increase.
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Figure B.3: The Fluctuation on Total Cumulative Relevance and Redundancy as the
Number of Selected Primitives Increase.

primitives increases. In Figure B.1, B.2 and B.3, the trend between 0 and 10% of the x-axis
shows the effects of adding direct primitives while the remaining shows the effect of adding
indirect ones. From Figure B.2, we can see that the increase of cumulative redundancy
tends to be larger than the increase of cumulative relevance, but they become close again
as they reach the 10%. We obtained similar results from Figure B.3 for the cumulative
total of relevance and redundancy. This means that, if Assumption 5.1 is true from 0% to
10%, then the error is expected to increase gradually and smoothly before it drops slightly
toward 10%. Nevertheless, we observed rather contradictory results on the accuracy curve
of Figure B.1—for all the three learning algorithms, the error drops almost linearly from
0 to 10%, which means that in the direct primitives space, Assumption 5.1 does not hold.

Next, we can see that similar result also occur at the initial stages when adding the
indirect primitives, particularly between 10% and 20% of the x-axis. Precisely, both Figure
B.2 and B.3 indicate that from around 13%, the cumulative relevance increase almost
linearly and the cumulative redundancy increase following a logarithmic behaviour. This
means that if Assumption 5.1 is true, the error is expected to become larger from 13%.
This is contradicted with what is shown in Figure B.1—the error continues to drop till it
reaches the best point at around 13% to 17%, and the accuracy stabilises up to the 20%
x-axis. Given that the number of primitives from both the direct and indirect primitives
spaces is close (i.e., 10% of the total number of relevant primitives for each space), theses
observations reveal that for the inter direct and indirect primitive spaces, Assumption
5.1 does not hold either. In addition, the accuracy trend implies that a combination of
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all direct primitives and some indirect ones yields better accuracy as it is important to
consider interference in the modelling.

Finally at Figure B.2, we can see that from 20% and onwards, the cumulative relevance
increases slightly and linearly whereas the cumulative redundancy tend to exhibit loga-
rithmic and nonlinear behaviour in its increase it increases from 20% and drops by 60%.
Similar trend can be observed from Figure B.3—at around 60%, the increasing slope of
cumulative redundancy becomes steeper towards the curve of cumulative relevance, which
keeps increasing linearly. As a result, if Assumption 5.1 is true, then the error should be-
come larger from 20% to 60%; while from 60% onward, the error should start to drop
slightly and smoothly. This is almost what we can observe from Figure B.1 for the three
learning algorithms. Since the effects of direct primitives becomes weaker (after 20%)
when more indirect primitives are involved in the modelling, the results indicate that in
the indirect primitives space, the Assumption 5.1 is indeed valid. Another observation is
that the model accuracy when using the direct primitives is generally better than using
of indirect primitives.

In summary of the experiments, we have obtained four major observations: (i) within
the direct primitives space, Assumption 5.1 does not hold. This is due to the fact that
the direct primitives space contains different underlying primitives that directly influence
the QoS, hence they can usually provide different aspects of information about a QoS
attribute, which cannot be correctly quantified by cumulative SU value. Surprisingly, we
also found that (ii) for inter direct and indirect primitives space, Assumption 5.1 does
not hold either; (iii) however, within the indirect primitives space, Assumption 5.1 is
valid. We believe that the reason for observations (ii) and (iii) is due to the fact that
different direct primitives provide different aspects of information about the QoS and they
influence the QoS directly. Whereas all the indirect ones can only do so via interference
and contention; henceforth, they can only provide information on contention which can
be regarded as one aspect of information that influence QoS. Obviously, this aspect of
information is different to that in the direct primitive space. These observations also
imply that the cumulative SU values can only quantify the effects of primitives to model
accuracy, when they provide the same aspect of information. The final observation (iv) is
that, although the overall relevance in direct primitives space is smaller than that of the
indirect primitives space (as the former is smaller in size), the resulted model accuracy
when using direct primitives is generally better than the use of indirect ones. This is
a typical consequence of redundancy: the overall redundancy in the indirect primitives
space tends to cause more negative effects on model accuracy than that of the direct one.
Such observation means that even when redundancy is considered, the direct primitives
can be more important than the indirect ones in the modelling. However, we observed
that the best accuracy is achieved by the combination of direct and indirect primitives.
This means consider proper information of QoS interference in the modelling can be quite
beneficial for accuracy.
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Appendix C
Glossary

Table C.1: The Acronyms in The Thesis.

Acronyms Description

QoS Quality of Service, this is the non-functional attributes that a cloud-
based service contain, e.g., response time, throughput and reliabil-
ity.

CP Control Primitives, this is the control knobs that realise autoscaling
in the cloud, e.g., number of threads, CPU and memory.

EP Environmental Primitives, this is the dynamic and uncertain factors
that affect autoscaling in the cloud, e.g., the workload and size of
incoming tasks/jobs.

VM Virtual Machine, this is the conceptual unit that contains certain
allocation of the resources in the cloud.

PM Physical Machine, this is the machine that running in the cloud
infrastructure.

SU Symmetric Uncertainty, this is a metric that used to measure the
relevance between two random variables. It is heavily used in Chap-
ter 4 and 5 for the QoS modelling approach.

ANN Artificial Neural Network, this is a machine learning algorithm,
derived from biological neural networks, that is capable to model
complex nonlinear correlations. It is heavily used in Chapter 4 and
5 for the QoS modelling approach.

S-ANN Sensitivity aware Artificial Neural Network, this is the ANN that
improved by primitives selection approach.

C-ANN Conventional Artificial Neural Network, this is the ANN that does
not use primitives selection approach.

RPROP Resilient backpropagation, is a learning heuristic for supervised
learning in feedforward artificial neural networks.
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ARMAX Auto-Regressive Moving Average with eXogenous inputs model,
this is a simple, but efficient machine learning algorithm that mod-
els linear correlations. It is heavily used in Chapter 4 and 5 for the
QoS modelling approach.

S-ARMAX Sensitivity aware Auto-Regressive Moving Average with eXogenous
inputs model, this is the ARMAX that improved by primitives se-
lection approach.

C-ARMAX Conventional Auto-Regressive Moving Average with eXogenous in-
puts model, this is the ARMAX that does not use primitives selec-
tion approach.

RT Regression Tree, this is a tree-liked machine learning algorithm. It
is heavily used in Chapter 5 for the QoS modelling approach.

SMAPE Symmetric Mean Absolute Percentage Error, this is the metric that
measures the percentage error in model prediction. It is also re-
silient to outliers.

RSD Relative Standard Deviation, this is the metric that measures how
fluctuated a QoS trend tends to be.

HYBRID The proposed cloud primitives selection approach that using hybrid
dual-learners, as described in Chapter 5.

SINGLE-MR The compared single-learner primitives selection approach that re-
lies on maximal relevance for all the primitives space, as described
in Chapter 5.

SINGLE-
MRMR

The compared single-learner primitives selection approach that re-
lies on maximal relevance and minimal redundancy for all the prim-
itives space, as described in Chapter 5.

SINGLE-
MRMR

The compared single-learner primitives selection approach that re-
lies on maximal relevance and minimal redundancy for all the prim-
itives space, as described in Chapter 5.

MANUAL The fixed and offline primitive selection approach, as described in
Chapter 5.

SINGLE-
MR-DIRECT

The compared single-learner primitives selection approach that re-
lies on maximal relevance and minimal redundancy for all the direct
primitives space only, as described in Chapter 5.

ADAPTIVE The proposed multi-learners approach for QoS function training, as
described in Chapter 5.

MOACO Multi-Objective Ant Colony Optimization, this is the proposed
search-based algorithm for optimizing autoscaling decisions.

CD Compromise-Dominance, this is the proposed mechanism to search
for well-compromised trade-off decisions.

MOGA Multi-Objective Genetic Algorithm, this is the compared algorithm
for optimizing autoscaling decisions using MOGA.
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RULE This is the compared approach for optimizing autoscaling decisions
using predefined if-conditions-then-action mapping.

HILL This is the compared approach for optimizing autoscaling decisions
using hill-climbing search algorithm.

RANDOM This is the compared approach for optimizing autoscaling decisions
using randomised search algorithm.
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