SELF-AWARE AND SELF-ADAPTIVE
AUTOSCALING FOR CLOUD-BASED

SERVICES

by

TAO CHEN

A thesis submitted to

the University of Birmingham
for the degree of

DocCTOR OF PHILOSOPHY

School of Computer Science

College of Engineering and Physical Sciences
University of Birmingham

November 2015



ABSTRACT

Modern Internet services are increasingly leveraging on cloud computing for flexible, elas-
tic and on-demand provision. Typically, Quality of Service (QoS) of cloud-based services
can be tuned using different underlying cloud configurations and resources, e.g., number
of threads, CPU and memory etc., which are shared, leased and priced as utilities. This
benefit is fundamentally grounded by autoscaling: an automatic and elastic process that
adapts cloud configurations on-demand according to time-varying workloads. This thesis
proposes a holistic cloud autoscaling framework to effectively and seamlessly address ex-
isting challenges related to different logical aspects of autoscaling, including architecting
autoscaling system, modelling the QoS of cloud-based service, determining the granularity
of control and deciding trade-off autoscaling decisions. The framework takes advantages
of the principles of self-awareness and the related algorithms to adaptively handle the
dynamics, uncertainties, QoS interference and trade-offs on objectives that are exhibited
in the cloud. The major benefit is that, by leveraging the framework, cloud autoscaling
can be effectively achieved without heavy human analysis and design time knowledge.
Through conducting various experiments using RUBIS benchmark and realistic workload
on real cloud setting, this thesis evaluates the effectiveness of the framework based on

various quality indicators and compared with other state-of-the-art approaches.
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CHAPTER 1

INTRODUCTION

Modern IT companies, from large enterprises to small business, are increasingly leverag-
ing on cloud computing to improve their profits and reduce the costs. Unlike many other
similar computing paradigms, such as Cluster computing and Grid computing, cloud
computing provides on-demand access to virtual computing resources, software stacks,
applications and services through the principle of shared infrastructure. Typically, exist-
ing cloud providers offer three hierarchical layers according to the levels of abstraction
[73], these layers are: Software as-a-Service (SaaS), Platform as-a-Service (PaaS) and In-
frastructure as-a-Service (IaaS), as shown in Figure [L.1] In the SaaS layer, the end-users
are allowed to access to various cloud-based services, which are often well-deployed and
readily available to use. These cloud-based services can refer to the entire application
and system, e.g., Gmail; or any conceptual part within an application, e.g., a payroll re-
porting service in a large human-resource management application. In contrast, the PaaS
layer focuses on providing a shared platform that allowing consumers to develop, run and
manage application or services without the complexity of building and maintaining the
infrastructure. This is achieved by offering a software stack, which consists of various con-
figurable software to support the entire cloud-based service life cycle. Examples of these

software include application server where there are configurable number of max threads
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Figure 1.1: The Standard Three Layers Cloud.

and session life time; or database server that permits configurable number of max connec-
tions and buffer size. The laaS layer offers a shared infrastructure, where the concern is
on provisioning hardware resources, including CPU, memory and bandwidth etc. These
resources are usually controlled by virtulization and packed in a Virtual Machine (VM).
Clearly, the software configurations at PaaS layer and the hardware resources at laaS
layer serve as the fundamental elements that support the running cloud-based services at
SaaS layer. However, this comes with costs, providing that those software and resources
are priced by the PaaS and laaS providers as utilities and, therefore, they need to be

leased in a pay-as-you-go manner.

1.1 Research Storyline

One of the pronounced benefits of the cloud, regardless of the levels of abstraction, is

elasticity. In the context of cloud computing, Herbst et al. [73] have defined elasticity as:



Elasticity measures the degree to which a system is able to adapt to workload
changes by provisioning and de-provisioning resources in an autonomic man-
ner, such that at each point in time the available resources match the current

demand as closely as possible.

whereby the demand is measured according to certain Quality of Service (QoS) attributes
or cost. The QoS, for example, can be response time, throughput or any other non-
functional attribute experienced by the end-users. Herbst et al’s definition reflects the
on-demand nature of elasticity in the cloud; however, they only focus on elasticity at the
laaS layer where the concern has been on hardware resources (a.k.a. resource elasticity).
As discussed by Dustdar et al. [49], understanding elasticity purely from a viewpoint of
resource is rather restrictive. Thus, in turn, they claim that elasticity in the cloud should
cover two additional dimensions where the focus are the changes in QoS attributes and
cost, which are formally termed as QoS elasticity and cost elasticity respectively.

To ensure high level QoS and cost requirements at the SaaS, we argue that elasticity
should cover all the three layers in the cloud, especially when the software configurations at
PaaS layer can cause considerable interplay and effects on the required hardware resources
at laaS layer, as evident by our early study [31] and much recent work [26] [139] [99]
[49]. Indeed, when the cloud-based services at SaaS layer suffer dynamic environmental
conditions, such as workloads and the size of the incoming jobs, governing their QoS
and the incurred costs is among the primary concerns of IaaS providers, PaaS providers
and SaaS providers (a.k.a. service owners). This, in turn, requires QoS models that
capture the dynamic, and possibly uncertain sensitivity of QoS to software configurations,
hardware resource and environmental conditions. However, as shown in a recent survey
[13], existing work on QoS modelling is often coarse-grained, focusing on either application
or VM; in addition, the software configurations are rarely considered in conjunction with

the hardware resource and changes to the environmental conditions. In general, there
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is a lack of systematic solution for selecting the most relevant software configurations,
hardware resource and environmental conditions that can significantly influence the QoS.
To study QoS sensitivity for each individual cloud-based service across all the cloud layers,
this thesis looks into a fine-grained, dynamic and online QoS modelling approach to
select the relevant inputs of the QoS and model their magnitude in correlation to QoS
[BI[[38][33]. Our experimental analysis reveal that, (i) only the important inputs are
useful in QoS modelling; (ii) the performance of algorithms used to build the QoS models
vary depending on scenarios. These observations have motivated us to further investigate
a QoS modelling approach that is not only able to select the important inputs, but also
to identify the best algorithm out of a set of candidates for a given scenario [38][33].

When many cloud-based services run on the shared infrastructure, their QoS can be
interfered with by the dynamic and uncertain resources contention caused by the services’
neighbours, including the co-located services on a VM [112] and the co-hosted VMs on
a Physical Machine (PM) [I16]. This phenomenon, referred to as QoS interference,
has become a non-trivial and challenging issue in the cloud. However, QoS interference,
especially at the co-located services level, has been rarely considered in state-of-the-art
elasticity management approaches. To this end, this thesis explicitly captures the in-
formation of QoS interference at both service- and VM-levels, as well as their interplay
with the other inputs (i.e., software configurations, hardware resources and environment
conditions of a cloud-based service) in the QoS modelling [31][38][33].

In certain predictable scenarios where the environmental condition has strong sea-
sonality and the QoS interference is minimal, the configurations and resources can be
approximately predefined. Nevertheless, for many other cases, for examples, spiked work-
loads and uncertain QoS interference, elasticity can be only enabled by runtime automatic
scaling, or simply autoscaling: an automatic and elastic process, typically running on a

PM, that adapts software configurations and hardware resources provisioning on-demand



according to the changing environmental conditions. The concrete scaling actions can be
either vertical scaling or horizontal scaling: the former refers to change the configurations
and resources within a PM; the later refers to boots up/shutdown VMs on the other PMs
via migration or replication. The ultimate goal of autoscaling is to continually optimise
the QoS and cost objectives for all cloud-based services; thus their Service Level Agree-
ment (SLA) and budget requirements can be better complied with. We term the situation
as globally-optimal benefit in the cloud when the objectives of all cloud-based ser-
vices reach their optimal results. However, achieving globally-optimal benefit depends
on the right granularity of control that is difficult to ensure in cloud autoscaling. This
is because the QoS sensitivity and the possible interference are dynamic and uncertain
in nature. Existing control, for example, is often statically applied on the entire cloud,
physical machine, virtual machine or service etc. These can lead to scenarios where the
autoscaling approach might result in large overhead or the global benefit is compromised.
By leveraging the QoS models, this thesis introduces a dynamic approach that determines
the right granularity of control, in such a way that the global benefit is optimised while
the overhead is reduced [32][36].

Deciding on the optimal software configurations and hardware resource provisions is
an extremely complex task in autoscaling. It becomes even harder when the dynamic, and
possibly uncertain trade-offs are required for conflicted objectives, e.g., throughput and
cost, and the interfered cloud-based services. However, the most widely applied weighted-
sum formulation in autoscaling decision making might lead to some major issues (i) there
is only coarse-grained information about the trade-off surfaces and (ii) in some cases, it is
very difficult to correctly specify weights, especially for the objectives of interfered cloud-
based services. To resolve these issues, this thesis builds on the right QoS models and
granularity of control; the thesis then explore a dynamic, weights-free trade-offs decision

making approach for cloud autoscaling [34]. The proposed approach optimises for the



objectives till the points where trade-offs need to be made, and the resulting decision
is guaranteed to achieve well-compromised trade-offs—a large improvements on the
majority of the objectives; while causing relatively small degradations to others.

The research activities presented in this thesis have lead to a novel autoscaling frame-
work in the cloud. In particular, to better handle dynamics, uncertainty, QoS interference
and trade-offs related to the autoscaling process; while reducing human intervention and
the needs of design time knowledge, we leverage the formal principles of self-awareness [18§]
by investigating the related architectures, methodologies and algorithms. Particularly, we

contribute the following research outputs.

1. A self-aware and self-adaptive autoscaling architecture that is mapped to the prin-
ciples of self-awareness and thus provides fine-grained representation of the required
knowledge. This calls for different levels of knowledge and self-awareness capabili-

ties, and hence help to better design and select the underlying algorithms [37][35].

2. A self-aware and self-adaptive QoS modelling approach that correlates the QoS with
software configurations, hardware resources, environmental conditions and QoS in-
terference across all the cloud layers. In particular, by acquiring the knowledge
of QoS sensitivity, it adaptively determines the most significant model inputs (in-
cluding QoS interference), the magnitude of models inputs and the best learning

algorithms used to tune the model [31][38][33].

3. A self-aware and self-adaptive approach that clusters the objectives into different
regions which are optimised independently. It aims to achieve globally-optimal
benefit while reducing the overhead in the cloud. This is achieved by knowing the

effects of granularity of control to the global benefit [32].

4. A self-aware and self-adaptive decision making approach that dynamically optimises

and searches for diversified trade-off decisions for autoscaling, from which well-
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compromised trade-offs can be reached. This is achieved by knowing the effects
of decisions (including QoS interference) on objectives, which permits extensive

reasoning and planning in the cloud autoscaling [34].

The remaining of this chapter motivates the need for self-aware and self-adaptive
autoscaling in cloud and discusses the assumptions, research questions, objectives, con-

tributions and organisation of this thesis.

1.2 Motivation

Consider, for example, a growing company named Rbay, which is seeking to deploy nu-
merous services into the cloud for meeting their increasing workloads from the end-users.
To reduce management complexity, they have chosen to deploy their services as SaaS on
a big cloud provider who is offering both PaaS and IaaS solutions. The cloud provider
supports public cloud and it is also currently severing many other consumers. Given the
dynamic and uncertain workloads on Rbay’s services, their primary concern has been on
the QoS of the services running in cloud, and they expect to use as minimal as possible
cost to achieve the best QoS possible. This is also the same desire for the cloud provider
as they have signed SLA and budget agreement with Rbay, which means that improving
the QoS with minimal cost is likely to earn better reputation, and save the resources for
other consumers. To achieve this, one solution that Rbay can facilitate is autoscaling.

However, for this to come true, they face several difficulties and challenges:

e Rbay are struggling with determining the amount of software configurations and
hardware resources that their services need. The difficulty lies in the fact that
they lack knowledge about the model and correlation between QoS of their services
and the underlying features, including software configurations, hardware resources

and environmental conditions. Theses features are referred to as cloud primitives



throughout the thesis. The QoS models can be heterogeneous depends on the cloud-
based services and their QoS attributes, providing that the metrics of QoS attributes
and the characteristics of the service tend to be different. More importantly, the
challenge is that the dynamic and uncertain interplays among the cloud primitives
and their combinatorial influences on the QoS have caused the model accuracy
difficult to be preserved. This becomes even more challenging in the presence of
QoS interference, because Rbay are not able to reason about the likely effects of

autoscaling on their services, as well as on those of the other existing consumers.

When autoscaling in the presence of QoS interference, it is important to consider the
interfered cloud-based services, including their QoS and costs during autoscaling.
This is actually a challenge for the cloud provider since optimising the objectives for
a service in isolation may compromise other services’ objectives. However, reaching
a right granularity of control in autoscaling becomes a difficulty, providing that the
QoS interference is dynamic and uncertain in nature. Existing control, for example,
is often statically applied on the entire cloud, physical machine, virtual machine
or service etc. The cloud provider must be extremely cautious when designing the
autoscaling approach. This is because controlling the entire cloud at a time may
achieve global benefits (i.e., QoS and cost) for all cloud-based services, but likely
to result in large overheads. On the other hand, a local control (e.g., service level)
can often have acceptable overheads while achieving local benefits for some services,
but this may come with the consequence that the QoSs of many other services are

compromised.

Like many of the other companies, each of the Rbay’s services has different objec-
tives, including QoS attributes and cost. Now, suppose that the autoscaling system

has decided to improve the throughput of Rbay’s service-instance S;; by provisioning



more memory to the underlying VM. Such a decision might not be an issue when
the contention is light. However, as the provision increases, eventually it will result
in throughput degradation to the other service-instances on the co-hosted VMs,
leading to dynamic QoS interference with [26][139][116]. The same issue applies
when we increase the number of service threads for a service-instance, where the
co-located service-instances on the same VM might be interfered [139][99]. These
phenomena imply that there are trade-offs between the throughput of S;; and those
of the other service-instances, which might be owned by different cloud consumers.
It becomes more complex when we need to consider trade-offs between conflicted
objectives, e.g., the throughput and cost of S;;. All these facts can lead to a large
number of dependent objectives in a decision making process (i.e., more than 4).
Given the fluctuated QoS performance of cloud-based service and their interferences,
the key challenge is how to dynamically reason about the effects of different trade-
off decisions. Among the others, there are decisions that lead to the points where
the trade-offs achieve large improvements on the majority of the objectives; while
causing relative small degradations to others. These trade-offs, referred to as well-
compromised trade-offs (a.k.a. knee points), are almost the most preferable

ones.

Typically, current cloud providers provide a limited set of decisions bundles, each
of which contains a fixed combination of software configurations and hardware re-
sources provisioning. These predefined bundles can restrict the number of possi-
ble trade-off decisions and thus reduce the complexity for human decision making.
However, as stated in a recent survey conducted by Galante et al. [61], renting
bundles cannot and does not reflect the interests of consumers and the actual de-
mand of their cloud-based services. Therefore considering fine-grained, and arbi-

trary combinations of software configurations and hardware resources provisioning



is an inevitable outcome as the cloud computing paradigm continuous to evolve.
This makes the trade-off decision making problem in autoscaling become even more
challenging as the possible number of trade-off decisions and their diversity tend to

be incredibly large.

Given the dynamic and uncertain nature in cloud, all these challenges and difficulties
need to be handled at runtime. This implies that effectively managing autoscaling in
the cloud tends to be a task that is far beyond the capability of human analysis and
intervention, thus urging for more intelligent foundations and solutions. In this thesis, we
argue that the principle of self-awareness can render itself as a neat solution for addressing
these challenges. In general, self-awareness is concerned with one’s ability to acquire
knowledge about one’s current state and the environment. Such knowledge permits better
reasoning about one’s adaptive behaviour. The benefits of self-awareness, as stated by
Becker et al. [I8], include better adaptivity of a system in handling runtime dynamics,
uncertainty, heterogeneity and trade-offs—all belong to the requirements of autoscaling

in the cloud.

1.3 Research Questions and Objectives

To enable self-aware and self-adaptive autoscaling in the cloud and cope with the afore-
mentioned challenges, one of the key tasks is to understand and accurately model the
correlation between QoS attributes and the underlying cloud primitives on-the-fly, tak-
ing QoS interference into account. Such a task, namely self-aware QoS modelling, is the
essential input for the other two subsequent processes for autoscaling, namely self-aware
granularity of control and self-aware trade-off decision making. It is easy to see that, by
acquiring knowledge about QoS models, one can easily isolate which QoS or cost objec-
tives tend to influence others (i.e., conflicted or harmonic objectives) while which are the

ones that can be considered in independent decision making processes. In this way, the

10



right granularity can be dynamically determined with reduced overhead while not dam-
aging the global benefit. Presumably, the QoS models and the appropriate granularity of
control promote better trade-off decision making in autoscaling: the former permits the
foundation to dynamically reason about the likely effects of different trade-offs decisions
and thus adjust the decision making process accordingly; while the latter, guarantees
the global benefit and limits the resulting overhead. The computational self-awareness
provides a promising avenue for all these requirements and challenges, and therefore, to
systematically design self-aware algorithms and techniques for the three processes, the
fundamental task is to study how the general principle of self-awareness can be applied in
an autoscaling system. This task, namely self-aware autoscaling architecture, is concerned
with architecting the self-awareness capabilities and autoscaling in the cloud. As a result,
the core research question of this thesis towards self-aware and self-adaptive autoscaling

in the cloud is:

How can self-awareness and the related algorithms be incorporated into the
process of elastically autoscaling cloud-based services, such that the autoscal-
ing system is able to handle runtime dynamics, uncertainties and trade-offs
exhibited in the cloud? What are the benefits of self-awareness and to what
extent can it be beneficial, when compared to approaches with no or limited

self-awareness?

Specifically, as shown in Table [[.1} more detailed research questions can be discussed in
different logical aspects that facilitate autoscaling, i.e., autoscaling architecture, cloud

QoS modelling, granularity of control in the cloud and trade-off decision making.

1.3.1 Objectives

Driven by the aforementioned research questions, this thesis aims to investigate how to

build more intelligent and dependable autoscaling systems in the cloud by leveraging self-
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Table 1.1: The Detailed Research Questions of The Thesis.

Autoscaling architecture

R@ 1.1. | How to incorporate and map the self-awareness capabilities to autoscaling
in the cloud?
RQ 1.2. | How to architect self-aware autoscaling system? What are the benefits we

can expect from this enriched architecture?

Cloud QoS modelling

RQ 2.1.

How to dynamically select the important, yet uncertain cloud primitives
(e.g., software configurations, hardware resources and environmental con-
ditions) when modelling the QoS for cloud-based services. Which cloud
primitives tend to be significant while which are the irrelevant ones? When
these cloud primitives should be considered in the models?

RQ 2.2.

How to dynamically model and quantify the uncertain magnitude of cloud
primitives in the correlation between them and a QoS attribute.

RO 2.3

How to incorporate the dynamic and uncertain information about QoS in-
terference into the models.

RQ 2.7.

How to ensure the accuracy of the QoS models.

Granularity of control in the cloud

RQ@ 3.1. | What are the effects of control granularity on globally-optimal result (i.e.,
result with respect to QoS and cost of all cloud-based services) and the
overhead in cloud?

R@ 3.2. | Whether local control (e.g., service level) can achieve similar global benefit
to global control (e.g., cloud level)?

R@ 3.3. | How to handle the dynamics and uncertainty associated with the granularity

of control in cloud and its effects on the global benefit.

Trade-off decision making in autoscaling

RQ J.1.

Given the dynamic and uncertain nature of the autoscaling decision making
problem in cloud, how to dynamically search and optimise for the uncer-
tain trade-off decisions, considering the naturally conflicted objectives and
uncertain QoS interference?

RQ 4.2.

How to dynamically reason about the effects of decisions on QoS and cost
objectives, and the uncertain trade-offs considering their requirements.

RQ 4.2.

How to quantify the extent of compromises in the trade-off? How to dy-
namically determine the well-compromised trade-off.

awareness and related algorithms. To achieve such, we have identified several objectives,

as shown in Table [1.2
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Table 1.2: The Objectives of The Thesis.

The Targeted RQ

Objective

RQ 1.1.

Investigate the self-awareness capabilities and their mapping to
the necessary components of autoscaling in the cloud. The map-
ping should express how various levels of self-awareness and
knowledge can be used to address the challenges in autoscaling.

RQ 1.2. Drawing on the mapping, blueprint an architecture for self-aware
and self-adaptive autoscaling.

RQ 2.1. and RQ | Study the sensitivity of the QoS models’ accuracy to the se-

2.3. lected cloud primitives while considering the QoS interference

in cloud. Quantify the relative importance and significance of
selected cloud primitives in the correlation.

RQ 2.2., RQ 2.5.
and RQ) 2.4.

Look into approaches that model the QoS sensitivity for cloud-
based services with respect to the cloud primitives. This is con-
cerned with understanding which (e.g., are CPU and throughput
correlated?), when (i.e., at which point in time they are corre-
lated?) and how (i.e., the magnitude of primitives in correlation)
the primitives correlate with QoS. Particularly, it is necessary
to examine and compare the major QoS modelling approaches,
which are currently applied in the cloud, in terms of their accu-
racy and complexity. In this way, we intend to adopt and combine
potential approaches for the case of autoscaling with improved
accuracy and acceptable complexity.

RQ 3.1., RQ 3.2.
and RQ 3.5.

Investigate approaches that dynamically determine the right
granularity of control for autoscaling in the cloud through rea-
soning about the effects of granularity on the global benefit. The
ultimate goal is to understand the balance between the effects on
global benefit and overhead achieved by the autoscaling system.

RQ .1.
4.2.

and RQ

Explore approaches that dynamically optimise and search for
trade-off decision in autoscaling to reduce the complexity of hu-
man intervention; while considering the SLAs and cost require-
ments. Given the potentially large amount of possible decisions
for autoscaling, the approach should be efficient for reasoning
about the effects of autoscaling decision on services’ objectives
and their trade-offs at runtime.

RO .3

Identify a method to quantify the extents of compromises
in trade-offs and build a mechanism that converges to well-
compromised trade-offs without human intervention.
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1.4 Scope and Assumptions

In the following, we codify the scope of this thesis through several assumptions.

e In this thesis, cloud-based services can refer to the entire application and system,
e.g., Gmail; or any conceptual part within an application, e.g., a payroll report-
ing service in a large human-resource management application. We assume that
applications in the cloud are composed of services, each has different QoS require-
ments and external environment changes (e.g., changes in workload). The hardware
resource can be shared amongst the services (e.g., CPU of the VM); whereas the
software configurations are tuneable and can be specific to one service (e.g., threads
of a service), as supported by many real-world applications (e.g., the Weblogic [3])
and standards (e.g., the JAX-WS standard [4]). This assumption promotes fine-
grained differentiation and control for the cloud-based services. More importantly,
this assumption about service permit to maximize the flexibility of an autoscaling
system such that it can be customized to work on the entire application or any parts

of it as necessary.

e Often, multi-tier applications and services in the cloud can have multiple replicas
for various purposes, e.g., service differentiation and load balancing etc. Therefore
we assume that each tier in a multi-tier application, consisting of concrete services,
can have multiple replicas deployed on different VMs or even PMs. In this thesis,
we refer to the replicas of concrete services as service-instances. The jth instance
of the ith cloud-based service is denoted as S;;. We aim to optimise the objectives

for all those service-instances in the cloud.

e We do not consider the trade-off on scaling actions, i.e., vertical scaling vs. horizon-

tal scaling. The primary concern of this thesis has been on reaching an autoscaling
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decision that contains the right combination of software configurations and hard-
ware resources for all cloud-based services. In our autoscaling framework, vertical
scaling always takes higher priority, providing that modern hypervisors (e.g., Xen
[6]) can achieve dynamic vertical scaling with negligible overheads. The resources
on a PM are provisioned to the VMs in a first-come-first-serve basis. The horizontal
scaling, on the other hand, is only triggered when the resources of the PM tends to

be exhausted. We leave the study on the effects of scaling actions for future work.

e Since we tackle the autoscaling problem for the benefits of cloud consumers (i.e.,
service owners), we do not consider the work that focuses on VM to PM consolida-
tion, VM creation, VM termination, VM migration and VM replication unless they

explicitly consider autoscaling as a key contribution of their research.

1.5 Research Methodology

The research methodology of the thesis can be seen as similar to the Design Science
Research Methodology [109], which is an iterative process. The main processing steps can

be discussed as the following:

e Understanding of the problem: The first step is to gain conceptual understanding
of the problem domain, i.e., autoscaling in the cloud. This is achieved by a large
amount of literature review. At the very early stage of the research, the concrete
research direction may not be obvious, thus a general understanding of a wide ranges
of problem in cloud computing is needed. As the knowledge is built, the research
direction is then gradually converge to the related problem for autoscaling in the

cloud, which is now the formal problem addressed in this thesis

e Suggestions and Hypothesis: In this step, potential issues and gaps in current re-

search are identified. These issues are the keys that should be investigated clearly
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when reading each related work. Some hypothesis about the possible solution to
those issues are made, and they can influence the search key words in the literature
review process. For example, when machine learning is identified as one possible so-
lution to the problem of QoS modeling in the cloud, then a new phase of search key
words can be added: machine learning AND cloud computing AND QoS modelling

OR performance modelling

Prototyping: This step requires implementation and development work to realize
the concepts developed in the previous stage. It also require close investigation of
some related techniques form other fields, e.g., machine learning and optimization
algorithms. It is worth noting that from this stage forward, the research can go
back to the first step if serious issues (e.g., wrong understanding of the problem)

are found or incorrect hypothesis is made in the previous step.

FEvaluation: Once the prototype has been completed, qualitative and quantitative
evaluation can be carried out. In particular, qualitative evaluation is achieved by
examining how well the prototype realize the concepts against design criteria, while
quantitative evaluation is based on experiments run in a controlled environments.
When the results do not meet with expectations, then it is necessary to iterative

back to step 1 or 2 for invalidating the knowledge and hypothesis.

Conclusion: The final step is concerned with formally positioning the contributions

and reporting on the results found in the research process.

1.6 Contributions

There are numbers of steps that have been taken to tackle the aforementioned research

questions and objectives. Collectively, as an ultimate result of this thesis, those steps

have leaded to a holistic, self-aware and self-adaptive autoscaling framework that is able
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to optimise the QoS and costs for all cloud-based services, with limited human intervention
and design time knowledge. This framework consists of different components, each deals
with a different category of research questions presented in Section [I.3] Particularly, this

thesis draws several novel contributions, which are listed in Table

Table 1.3: The Detailed Contributions of The Thesis

Contribution Addressed

RQ

1. A set of common criteria that can be used to assessed and compared
existing autoscaling approach in the cloud. Additionally, a taxonomy
is produced deriving from these criteria and the corresponding compar-
isons. Finally, a survey that provides the key background information,
strengths, weakness and categorisation of existing approaches for au-
toscaling in the cloud.

2. Autoscaling architecture leverages the self-awareness principle and | RQ) 1.1. and
capabilities. RQ 1.2.

e A mapping between self-awareness capabilities and the important
components in autoscaling by leveraging the general principle of self-
awareness. This mapping justifies the need of self-awareness capability
at different levels and provides a concise understanding about how self-
awareness can be applied to resolve the challenges for autoscaling in
the cloud.

e An autoscaling architecture that is built using self-aware patterns
[39]. The proposed architecture not only describes how the self-
awareness capabilities are encapsulated into components, but also ex-
presses their potential interactions, which help to better consolidate
different levels of self-awareness.

e By leveraging self-awareness, the autoscaling framework realises bi-
directional adaptation. That is to say, it is not only able to adapt
the underlying cloud-based services and VMs, but also able to fur-
ther consolidate itself by acquiring the knowledge about itself and the
environment through different self-awareness capabilities.

3. Self-aware and self-adaptive QoS modelling approach for autoscaling | RQ 2.1. to
in the cloud. RQ 2.4.
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e A fine-grained and generic QoS model, which is designed to handle
dynamic and uncertain QoS sensitivity; and to incorporate information
of the uncertain QoS interference caused by the cloud-based services
co-located on a VM and the VMs co-hosted on a PM.

e An in-depth analysis on the correlations of selected cloud primi-
tives to the model accuracy in the cloud; in particular, this analysis
shows how the model accuracy can be affected by the selected cloud
primitives.

e A self-aware and self-adaptive technique, namely hybrid dual-
learners, to determine which and the cloud primitives correlates with
the QoS on the fly using information theory [I30]. This technique has
been diverged into four variations, which are experimentally compared
and evaluated.

e A suitability analysis of different learning algorithm for modelling
QoS against different QoS attributes. Particularly, three widely used
machine learning algorithms are examined, including Artificial Neural
Network (ANN) [119], Auto-Regressive Moving Average with eXoge-
nous inputs model (ARMAX) [22] and Regression Tree (RT) [117].

e A self-aware and self-adaptive solution, namely adaptive multi-
learners, to dynamically model how the cloud primitives correlates
with the QoS. The proposed solution is not only able to dynamically
correlate the selected cloud primitives to the QoS, but also to adap-
tively select the best learning algorithm and its resulting model during
prediction in cloud.

e The QoS modelling approach is experimentally evaluated using RU-
BiS [5] benchmark and FIFA 98 workload trend [14]. This is achieved
by comparing to various other state-of-the-art approaches; and un-
der four commonly used QoS attributes, these are: Response Time,
Throughput, Reliability and Availability. The evaluation criteria have
been on accuracy, stability, sensitivity to the online data size and effi-
ciency.
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4. Self-aware and self-adaptive mechanism that adapts the granularity
of control in autoscaling.

e A self-aware, self-adaptive and two-phase region clustering mech-
anism that clusters the QoS and cost objectives into sensitivity inde-
pendent regions. The basic principle behind the notions of sensitivity
independent regions is that it is possible to reach globally-optimal re-
sult (with respect to the QoS and cost of all cloud-based services) by
asynchronously finding locally-optimal results within each sensitivity
independent region. This can eventually shrink the search space and
reduce overhead.

e The mechanism is experimentally evaluated via hypothetical sce-
narios, which contain different numbers of services. This is achieved
by comparing with existing solutions that statically operate on dif-
ferent fixed granularities of control, including cloud-level, PM-level,
VM-level and service-level. The achieved globally-optimal result and
the produced overhead are assessed.

RQ 3.1.
RQ 3.3.

to

5 Self-aware and self-adaptive trade-off decision making approach for
autoscaling in the cloud.

e In light of many successful applications of metaheuristics algorithms
in the cloud, we present self-aware and self-adaptive decision making
process where the core is a Multi-Objective Ant Colony Optimisation
(MOACO) algorithm that designed to search the optimal (or near-
optimal) trade-offs decisions for autoscaling in the cloud. This ap-
proach eliminates the need for specifying weights in the objective for-
mulation and is able to handle trade-offs caused by naturally conflicted
objectives and QoS interference. In addition, the stochastic nature of
MOACO allows it to achieve good coverage in the trade-offs surface,
and thus improving diversity in the trade-offs decisions. The search
process in our MOACO is similar to conduct many single objective op-
timisations in one run, which aims to optimise and make trade-offs for
a larger number of objectives than the commonly used 2 to 4 objectives
(i.e., up to 30 objectives in our experiments).
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e A triple mechanism, namely compromise-dominance, for finding
well-compromised trade-offs based on superiority and fairness of the
decisions. The former is measured by pareto-dominance [67], and the
latter is achieved via nash-dominance [108] and the distance of de-
cisions measurement. The mechanism is able to dynamically achieve
well-balanced improvements and degradations for the objectives, with-
out being guided by weights in the objective formulation.

e The trade-off decision making approach is experimentally evalu-
ated, again, using RUBIS [5] benchmark and FIFA 98 workload trend
[14]. This is achieved by comparing our results to those of four widely
used approaches for autoscaling: rule-based, single-objective heuristic
based, single-objective randomised and multi-objective genetic algo-
rithm based; and under four commonly used QoS attributes, these are:
Response Time, Throughput, Reliability and Availability. These ap-
proaches are critically examined in terms of their quality of trade-offs,
violations on SLA and budget requirements, over-/under-provisioning
and overhead.

1.7 Publications and Thesis Organisation

The work presented in this thesis has been to a degree or completely derived from the set
of papers published during the course of the PhD candidature. These published papers are
listed in Table [I.4] Nevertheless, this thesis should be regarded as the definitive account
of the work. It is worth mentioning that for all the joint papers, the PhD candidate
has contributed to nearly all the content of the work (i.e., more than 95%). The other

co-authors are credited for their suggestions, discussions and comments on the proposing

ideas and experiments.

Figure (1.2 shows the relationship between the chapters and which logical aspect of the

autoscaling they belong to. The remainder of this thesis is organised as follows:

e Chapter [2| presents a taxonomy and survey about autoscaling in the cloud, including

detailed background, existing approaches according to the categorisation of research
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Table 1.4: The Publications Related to The Thesis.

Publications

T. Chen, R. Bahsoon and G. Theodoropoulos. A Decentralized Archi-

tecture for Dynamic QoS Optimization in Cloud-based DDDAS. In pro-
ceeding of International Conference on Computational Science (ICCS),
Procedia of Computer Science, Elsevier Science, 2013.

ANl Published

T. Chen and R. Bahsoon. Self-Adaptive and Sensitivity-Aware QoS Mod-
eling for the Cloud. IIn proceeding of the 8th International ACM/IEEE
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), in conjunction with the 35th International Confer-
ence on Software Engineering (ICSE), San Francisco, CA, 2013.

T. Chen, R. Bahsoon and A-R H. Tawil. Scalable Service-Oriented Repli-
cation with Flexible Consistency Guarantee in the Cloud. Information
Sciences, Elsevier, vol. 264, 2014.

T. Chen and R. Bahsoon. Symbiotic and Sensitivity-Aware Architec-
ture for Globally-Optimal Benefit in Self-Adaptive Cloud. In proceeding
of the 9th International Symposium on Software Engineering for Adap-
tie and Self-Managing Systems (SEAMS), in conjunction with the 36th
International Conference on Software Engineering (ICSE), India, 2014.

T. Chen, F. Faniyi, R. Bahsoon, P.R. Lewis, X. Yao, L.L.. Minku, and L.
Esterle. The Handbook of Engineering Self-Aware and Self-Expressive
Systems. Technical Report, Aug. 2014 arXiv:1409.1793 [cs.SE]

T. Chen, R. Bahsoon and X. Yao. Online QoS Modeling in the Cloud: A
Hybrid and Adaptive Multi-Learners Approach. In proceeding of the 7th
IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), London, UK. 2014.

T. Chen and R. Bahsoon. Towards A Smarter Cloud: Self-Aware Au-
toscaling of Cloud Configurations and Resources, IEEE Computer, vol.
48, no. 9, 2015.

T. Chen and R. Bahsoon. Self-Adaptive and Online QoS Modeling for
Cloud-Based Software Services. [EEE Transactions on Software Engi-
neering (This paper is both accepted and under review because it was
accepted subject to revision, which we have submitted.)

T. Chen and R. Bahsoon. Self-Adaptive Trade-off Decision Making for
Autoscaling Cloud-Based Services. IEEFE Transactions on Services Com-
puting, 2015, doi:10.1109/TSC.2015.2499770
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Figure 1.2: Thesis Structure. (the arrows represent dependency between different logical
aspects of autoscaling)

questions and the positioning of this thesis in regards to existing work.

e The mapping of self-awareness capabilities to autoscaling in the cloud and the pro-

posed architecture are specified in Chapter [3| which is partially derived from:

— T. Chen, R. Bahsoon and G. Theodoropoulos. A Decentralized Architecture
for Dynamic QoS Optimization in Cloud-based DDDAS. In proceeding of Inter-
national Conference on Computational Science, Procedia of Computer Science,

Elsevier Science, 2013.

— T. Chen and R. Bahsoon. Towards A Smarter Cloud: Self-Aware Autoscaling

of Cloud Configurations and Resources, IEEE Computer, vol. 48, no. 9, 2015.

— T. Chen, F. Faniyi, R. Bahsoon, P.R. Lewis, X. Yao, L.L.. Minku, and L. Es-
terle. The Handbook of Engineering Self-Aware and Self-Expressive Systems.
Aug. 2014 arXiv:1409.1793 [cs.SE]
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e Chapter [4| describes the QoS modelling approach for correlating QoS of cloud-based

services to the underlying cloud primitives. This chapter is partially derived from:

— T. Chen and R. Bahsoon. Self-Adaptive and Sensitivity-Aware QoS Modeling
for the Cloud. In proceeding of the 8th International ACM/IEEE Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),

in conjunction with the 35th International Conference on Software Engineering

(ICSE), San Francisco, CA, 2013.

— T. Chen and R. Bahsoon. Self-Adaptive and Online QoS Modeling for Cloud-
Based Software Services, IEEE Transactions on Software Engineering, accepted

with major revision.

e Drawing on experimental observations, the QoS modelling approach is further im-
proved for better accuracy, applicability and less complexity, as described in Chapter

Bl This chapter is derived from:

— T. Chen, R. Bahsoon and X. Yao. Online QoS Modeling in the Cloud: A
Hybrid and Adaptive Multi-Learners Approach. In proceeding of the 7th
IEEE/ACM International Conference on Utility and Cloud Computing (UCC),
London, UK. 2014.

— T. Chen and R. Bahsoon. Self-Adaptive and Online QoS Modeling for Cloud-
Based Software Services, IEEE Transactions on Software Engineering, accepted

with major revision.

e Chapter [0 presents the mechanism for dynamically determining the right granularity

of control when autoscaling in the cloud. This chapter is derived from:

— T. Chen and R. Bahsoon. Symbiotic and Sensitivity-Aware Architecture for

Globally-Optimal Benefit in Self-Adaptive Cloud. In proceeding of the 9th In-
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ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), in conjunction with the 36th International Conference on
Software Engineering (ICSE), India, 2014.

— T. Chen, R. Bahsoon and A-R H. Tawil. Scalable Service-Oriented Replica-
tion with Flexible Consistency Guarantee in the Cloud. Information Sciences,

Elsevier, vol. 264, 2014.

e The trade-off decision making challenges for autoscaling in the cloud are investigated

in Chapter [7], which is derived from:

— T. Chen and R. Bahsoon. Self-Adaptive Trade-off Decision Making for Au-
toscaling for Cloud-Based Services, IEEE Transactions on Services Computing,

accepted as regular paper, to appear.

e A qualitative and reflective evaluation of the thesis with respect to different cri-
teria of cloud autoscaling, including dynamics, uncertainty, scalability, flexibility,

complexity of application and practical deployment, is presented in Chapter [§

e This thesis is concluded in Chapter [0 with detailed remarks and future research

directions.
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CHAPTER 2
TAXONOMY AND SURVEY OF

AUTOSCALING IN CLOUD

2.1 Background

2.1.1 Self-Adaptivity and Self-Awareness

The broad category of automatic and adaptive systems aim to deal with the dynamics that
the system exhibited without human intervention; but this does not necessarily involve
uncertainty, i.e., there are changes related to the system but it is easy to know when they
would occur and the extent of these changes. Self-adaptivity, being a sub-category, is a
particular capability of the system to handle both dynamics and uncertainty. Here, self-
adaptive systems refer to the systems that are able to adjust their behaviours according to
the perception of the uncertain environment and its own state. According to the adaptive
behaviors, self-adaptivity can be regarded as the following four properties, each of which
covers a specific set of goals, as explicitly discussed and categorized in many surveys, e.g.,

[118]:
e Self-configuring
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The capability of reconfiguring automatically and dynamically in response to changes

by installing, updating, integrating, and composing/decomposing software entities.

Self-healing

This is the capability of discovering, diagnosing, and reacting to disruptions. It can
also anticipate potential problems, and accordingly take proper actions to prevent
a failure. Self-diagnosing refers to diagnosing errors, faults, and failures, while self-

repairing focuses on recovery from them.

Self-optimizing

This is also called self-tuning or self-adjusting, is the capability of managing perfor-
mance and resource allocation in order to satisfy the requirements of different users.
End-to-end response time, throughput, utilisation, and workload are examples of

important concerns related to this property.

Self-protecting
This is the capability of detecting security breaches and recovering from their effects.
It has two aspects, namely defending the system against malicious attacks, and

anticipating problems and taking actions to avoid them or to mitigate their effects.

Self-awareness, on the other hand, is concerned with the system’s ability to acquire

knowledge about its current state and the environment. Such knowledge permits better

reasoning about the system’s adaptive behaviours. Consequently, self-awareness is often

seen as the lowest level of abstraction of self-adaptivity [118], and thus it can improve

the perception and self-adaptivity of a system, as surveyed in [92]. Inspired from the

psychology domain, Becker et al. [I8] have classified self-awareness of a computing system

into the following general capabilities (they have used node to represent any conceptual

part of a system being managed):
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e Stimulus-aware
A node is stimulus-aware if it has knowledge of stimuli. The node is not able to
distinguish between the sources of stimuli. It is a prerequisite for all other levels of

self-awareness.

e Interaction-aware
A node is interaction-aware if it has knowledge that stimuli and its own actions
form part of interactions with other nodes and the environment. It has knowledge
via feedback loops that its actions can provoke, generate or cause specific reactions

from the social or physical environment.

e Time-aware
A node is time-aware if it has knowledge of historical and/or likely future phe-
nomena. Implementing time-awareness may involve the node possessing an explicit

memory, capabilities of time series modelling and/or anticipation.

e Goal-aware
A node is goal-aware if it has knowledge of current goals, objectives, preferences and
constraints. It is important to note that there is a difference between a goal existing
implicitly in the design of a node, and the node having knowledge of that goal in
such a way that it can reason about it. The former does not describe goal-awareness;

the latter does.

e Meta-self-aware
A node is meta-self-aware if it has knowledge of its own capability(ies) of awareness
and the degree of complexity with which the capability(ies) are exercised. Such
awareness permits a node to reason about the benefits and costs of maintaining a
certain capability of awareness (and degree of complexity with which it exercises

this level).
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The benefits that self-awareness introduces for computing systems, including better
solution for runtime dynamics and uncertainty, heterogeneity, and trade-offs on objectives,
have rendered it as a neat solution for the challenges of cloud autoscaling as we have

discussed in Chapter [I]

2.1.2 Autoscaling in Cloud

From the literal meaning of the word ”autoscaling”, it is obvious that the process is dy-
namic and requires the system to adapt subject to the uncertain, changing state of the
services being managed and the environment. In such a way, the cloud-based services can
be ’expanded’ and ’shrink’ according to the environmental conditions at runtime. Given
that it is almost impossible to access the low level details of cloud-based services (e.g.,
their codes and algorithms) at runtime, an autoscaling system often consist of two physical
parts: a managing part containing the autoscaling logic and a manageable part includ-
ing services and VMs running in the cloud. The two physical parts are seamlessly and
transparently connected for realising the entire autoscaling process. This characteristic
has made autoscaling systems well-suited to the broad category of self-adaptive systems,
and the two parts structure of adaptation is known as the external adaptation [40] [118].
Depending on the given QoS attributes and the manageable cloud primitives, an autoscal-
ing system can cover self-configuring, self-healing, self-optimising and self-protecting, or
any combination of those, from the notion of self-adaptivity. A recent survey [02] has
established the evidences that self-awareness can improve a system that requires self-
adaptivity, and therefore achieving self-awareness is a promising way to enable better
autoscaling systems in cloud.

The external adaptation of an autoscaling system is shown in Figure[2.1 As we can see,
the core of an autoscaling system in the cloud is the autoscaling logic, which can consist

of multiple logical aspects. The simplest form of autoscaling system covers monitoring
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Figure 2.1: The Simplest Form of An Autoscaling System.

and scaling aspect in its autoscaling logic: the former gathers the service’s or application’s
current state while the latter utilises the information to decide an action. However, such a
simplified form of autoscaling system tends to be limited, since it cannot effectively handle
the increasing runtime complexity of the cloud environment, including, e.g., dynamic and
uncertainty caused by workload, the QoS performance and heterogeneity of cloud-based
services. Given the shared infrastructure of cloud, the autoscaling process should be
aware of and be able to handle QoS interference. This is because improving the QoS
performance of a service may likely to downgrade that of its neighbouring services and
VMs, which will negatively affect the overall quality of autoscaling and elasticity.

To improve the quality of adaptation, modern autoscaling systems often additionally
cover other more sophisticated aspects, including modelling, determining granularity of

control and decision making. The modelling is concerned with the model of QoS, en-
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vironment conditions (e.g., workload) and demand of the control knobs (e.g., software
configurations and hardware resources). The resulting models are a powerful tool to as-
sist the autoscaling decision making process. Without loss of generality, in this thesis,
we term both control knobs and environment conditions in the cloud as cloud primitives.
In such context, we further decompose the notion of primitives into two major domains:
these are Control Primitive (CP) and Environmental Primitive (EP). Control
Primitives are the internal control knobs and can be either software or hardware, which
can be managed by the cloud providers to support QoS. Specifically, software control
primitives are software tactics and the key configurations in cloud; such as the number
of threads in the thread pool of a service/application, the buffer size and load balancing
policies etc. Whereas, hardware control primitives are computational resources, such as
CPU and memory. Software and hardware control primitives rely on the PaaS and IaaS
layers respectively. In particular, it is non-trivial to consider software control primitives
when autoscaling in the cloud as they have been shown to be important features for QoS
[26] [139] [99]. On the other hand, Environmental Primitives refer to the external stim-
uli that cause dynamics and uncertainties in the cloud. These, for example, can be the
workload and unpredictable incoming data etc. If the cloud provider is able to control
the presence of the stimulus, then these can be considered as control primitives. These
models can often assist and improve the autoscaling decision making. It is worth noting
that the examples of primitives listed above are not exhaustive, Ghanbari et al. [66] have
provided a more completed and detailed list of the possible control primitives in cloud.
Determining granularity of control in the autoscaling logic is essential to ensure the
benefit (e.g, QoS and cost objectives) for all cloud-based service. It is concerned with
understanding whether certain objectives can be considered in isolation with some of the
others. This is because objective-dependency (i.e., conflicted or harmonic objectives) often

exist in the decisions making process, which implies that the overall quality of autoscaling
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can be significantly affected by the inclusion of conflicted or harmonic objectives in a
decision making process, hence rendering it as a complex task. This is especially true for
the shared infrastructure of cloud where objective-dependency exists for both intra- and
inter-services. That is to say, objective-dependency is not only caused by the nature of
objectives (intra- service), e.g, throughput and cost objective of a service; but also by the
QoS interference (inter-services) due to the co-located services on a VM and co-hosted
VMs on a PM [26] [139] [99] [116].

The final logical aspect in autoscaling logic is the dynamic decision making process that
produces the optimal (or near-optimal) decision, which consists of the newly configured
values of the related control primitives, for all the related objectives. In the presence
of objective dependency, autoscaling decision making requires to resolve complex trade-
offs, subject to the SLA and budget requirements. The trade-off decision can be then
executed using either vertical scaling and/or horizontal scaling actions, which adapt the
cloud-based services and/or VMs correspondingly.

In the following sections, we provide survey and taxonomy for the most influent and
recent work that is related to this thesis. Particularly, we present the review and discus-
sions based on the key logical aspects for autoscaling in the cloud, which are architectural
pattern, QoS modelling, granularity of control and decision making. We then position

this thesis by discussing how our work differ from those existing approaches.

2.2 Architectural Pattern

Autoscaling architecture is the most essential element of an autoscaling system in the
cloud. It describes the structure of the autoscaling process, the interaction between
components and the modularisation of the important logical aspects in autoscaling. In the
following, we survey the key architectural patterns that have been applied for autoscaling

in the cloud. In particular, we classify them into three categories based on their basic form;
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Figure 2.2: The Taxonomy of Architectural Patterns used in Autoscaling.

these are Feedback Loop Control [25], Observe-Decide-Act [74] and Monitor-Analysis-
Plan-Execute [76], where the latter two are essentially detailed variations of the former
one. The classification of those architectural patterns is the result obtained from literature
review. As one of the key outputs, we have identified that those three architectural

patterns are predominantly applied for autoscaling system in the cloud. The taxonomy

has been illustrated in Figure [2.2]

2.2.1 Feedback Loop Control

Feedback Loop Control is the most general architectural pattern for controlling self-
adaptive systems, including the autoscaling systems. It is usually a closed-form loop
made up of the managing system itself and the path transmitting its origin (e.g., a sen-

sor) to its destination (e.g., an actuator). Here, we further divide the pattern in terms of
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whether single or multiple loops are used.
Single Loop Control

Single loop control is the simplest, yet the most commonly used pattern for autoscaling
in the cloud due to its flexibility. The most common practice with single loop control is to
build a feedback loop where the core is the decision making component and an optional
QoS modelling component, e.g., Ferretti et al. [56] , CloudOpt [95], SmartSLA [132],
Padala et al [107], Kateb et al [51], Jiang et al. [77], CLOUDFARM [106], Grandhi et
al. [63]. Some other work has included an additional component for workload or demand
prediction based on either offline profiling, e.g., Jiang et al. [78] and Fernandez et al. [55],
or online learning, e.g., Kingfisher [121], Gambi et al. [62], Chihi et al. [44] and PRESS
[68].

Open feedback loop exists, as presented in Cloudine [60], where the scaling actions are
partially triggered by user requests. In particular, they use a centralised Resource and
Execution Manager to handle all the scaling actions. Apart from the general autoscaling
architecture, other efforts are particularly designed upon specific cloud providers [71],
[138], [81], [142]. For example, Zhang et al. [138] and Kabir and Chiu [81] propose to use
a simple feedback loop for architecting autoscaling system, which is heavily tied to the
properties of Amazon EC2 and S3. Other applications of single loop control, which are
worth mentioning, include: VScale [137] is a feedback based framework that particularly
focus on vertical scaling of VM in the cloud. It is deployed in a decentralised manner where
there is a dedicated instance running on each PM. iBoolean [I13] is a feedback control
approach for autoscaling hardware resource in the cloud. It is designed as a distributed
management framework, in which each individual VM initialise its own management.

There are architectures using single loop control where the core is classical control
theory [12], [70], [96], [10]. Particularly, Anglano et al. [12] present a fuzzilized feedback

control for autoscaling in the cloud. It is a typical controller using fuzzy theory driven by
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application performance. Guo et al. [70] also present a fuzzy logic based feedback control.

However, it only intend to scale the software control primitives.
Multiple Loop Control

Unlike the single loop control approach, it is possible to use multiple loops and con-
trollers for autoscaling in the cloud. Here, multiple feedback loops operate in different
levels of the architecture, e.g., one operates at the cloud level while the others operate
on each VM. The benefit is that multiple loops provide low coupling in the design of the
loops. Notably, multiple loop control can be used to separate global and local controls
[82], [15], [16], [104]. Among others, [82] apply a decentralised feedback control for au-
toscaling CPU in the cloud. Although it aims for individual applications, the controllers
actually operate on each tier of an application. Different controllers do not need to in-
teract with each others. ARUVE [15] utilises a global controller in conjunction with the
local controller to form multiple feedback loops. The local controllers are decentralised
on each PM while the global controller is centralised.

Multiple loop control is also effective for isolating the logical aspects of autoscaling and
management in the cloud [131], [134], [85], [43], [52], [126], [I35] [26], [I41]. For example,
Emeakaroha et al. [52] has also used multiple feedback loops. In particular, they use a
global feedback loop consisting of three local feedbacks, each of which operate on SaaS,
PaaS and TaaS layer. Wang, Xu and Zhao [126] propose a two layer feedback control for
autoscaling in the cloud. The first layer, termed guest-to-host optimisation, controls the
hardware resources, e.g., CPU and memory. Subsequently, the host-to-guest optimisation
adapts the software configuration accordingly.

Overall, existing work adopts feedback loop control for its simplicity and flexibility.
However, instead of designing autoscaling with a clear architectural blueprint beforehand,
they utilise a bottom-up approach where the design of autoscaling system starts off from

the underlying techniques and algorithms. Such design can limit the consideration of re-
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quired knowledge for the autoscaling system to perform adaptations, or the consideration
is rather simple and coarse-grained, as they do not express what level of knowledge is
required at which logical aspect of the system, and how they can be beneficial for the

adaptation.

2.2.2 Observe-Decide-Act

Observe-Decide-Act (ODA) loop [74] is considered as an extended pattern of the feedback
loop control, and it is concerned with the system monitoring itself and its environment,
making decisions about how to adapt behaviour using a set of available actions. A unique
Decide component separates it from the feedback loop control, as it explicitly requires to
perform reasoning about the effects of adaptation on the system’s goals and objectives.
While an ODA loop is most commonly applied for self-adaptive systems in general, only
few work (e.g., [79]) has included it for the design of autoscaling system in the cloud.
This is because one important aspect of ODA is to define the effects of human activities
on the adaptive behaviours, which is a difficult practice for autoscaling in the cloud.
SEEC [74], being the very first work to introduce ODA, is a general framework for
self-aware and self-adaptive systems. It applies ODA for decoupling the loops to different
roles (i.e., application developer, system developer, and the SEEC runtime decision in-
frastructure) in the development life-cycle, each role focuses on one or more steps in ODA.
[122] adopt an ODA loop to manage FPGA-based systems, where the decision and the
its translation to actions are conducted by an incorporation of the Decide and Act steps.
Bolchini et al. [21] have used ODA to realise the adaptation for self-adaptive systems
because of its simplicity. It observes high-level and raw data from the Observe step, such
data is then used by Decide to know which parts of the system to reason on, and finally,
actions are taken depends on the characteristic of the system being managed. Huber et

al. [75] also use ODA for self-aware autoscaling resources in the cloud. However, unlike
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traditional ODA loop, it has an additional Analysis step which is used to detect the type
of problems that trigger adaptation.

Overall, although the knowledge that a system requirs is sometime discussed in the
Decide step (e.g., [75]) in ODA, it cannot capture different levels of knowledge in a fine-
grained representation as required by the system. This is because ODA is mainly designed
for decoupling loops for different human activities, which allows application and systems

programmers to separately specify observations and actions, according to their expertise.

2.2.3 Monitor-Analyze-Plan-Execute

Another pattern extended from the feedback loop control, namely Monitor-Analyze-Plan-
Execute (MAPE), is firstly proposed by IBM for architecting self-adaptive systems. In
such pattern, the Decide step in OAD is further divided into two substeps, these are
Analyze and Plan, where the former is particularly designed to determine the causes
for adaptations, e.g., SLA violation; the latter, on the other hand, is responsible for
reasoning about the possible actions for adaptation. MAPE sometime can be extended by
a Knowledge component (a.k.a. MAPE-K) which maintains historical data and knowledge
used by the system for better adaptation.

MAPE (or MAPE-K) is widely applied for autoscaling in the cloud [94], [30], [23],
[T0T], [28], [91]. For example, the architecture of the FoSII ptoject [23] [101] leverages
MAPE-K to realise the self- management interface, which is necessary to devise actions
in order to prevent SLA violations in cloud. They also use the additional Knowledge
(K) component to record cases and the related solutions, which can assist the autoscaling
decision making. QoSMOS [2§] is designed for service-based systems rather than for cloud
specific autoscaling, however, it contains many aspects similar to that of autoscaling in the
cloud. To achieve continuous adaptation, it applies MAPE with the focuses on analytical

QoS modelling and optimisation of resource allocation. APPLEware [91] is an autoscaling
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framework which leverages MAPE. In their architecture, the Analyze component model
the QoS while the Plan component conducts optimisation process for autoscaling.

Realising multiple MAPE loops is also possible. Zhang et al. [139] introduce an
architecture for autoscaling using two nested MAPE loops. The first loop is responsible
for adapting the software primitives while the other loop is used to change the hardware
primitives. These two loops run sequentially upon autoscaling, that is, adapting the
software primitives before changing the hardware primitives. Similarly, BRGA [7] utilises
MAPE to realise a framework for autoscaling in the cloud. Such solution consists of both
the local and global view of the cloud-based application. In particular, the Monitor and
Ezxecution phase maintain the global view whereas the Analyze and Plan phase manage
the local view on each PM. The authors claim that such an approach can achieve good
global quality with reasonable management overhead.

In conclusion, MAPE can be good for separation of concepts (e.g., Analyze and Plan)
and for expressing the sequential interactions between those concepts. However, although
the Knowledge component can be considered, there is still no fine-grained representation
of the required knowledge for the system. Thus, it is not immediately intuitive that what

level of the knowledge is required by each logical aspect of the autoscaling system.

2.3 QoS Modelling

QoS modelling, or performance modelling, is a fundamental research theme in cloud com-
puting and it can serve as useful foundations for addressing many research problems in the
cloud [98], including autoscaling. The QoS models correlate the QoS attributes to various
control primitives and environmental primitives. Clearly, these models are particularly
important in cloud autoscaling, as they are a powerful tool that can assist the reasoning
about the effects of adaptation on objectives in the autoscaling decision making process.

Typically, QoS modelling consists of two phases, namely primitives selection and QoS
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function training. More precisely, the primitives selection phase determines which and
when the primitives correlate with the QoS; while QoS function training phase identify
how these primitives correlate with the QoS, i.e., their magnitudes in the correlation. The
QoS models can be either static or dynamic, where the former refers to the models’ ex-
pression and their structure (e.g., the number of inputs and their weights) do not change
over time; while the latter permits such changes. Those models can be also applied as
online at system runtime, or offline at design phase of the system. In the following, we

survey the key work on QoS modelling in the cloud and classify them in terms of the

Figure 2.3: The Taxonomy of QoS Modelling in Cloud.

algorithms they apply. The taxonomy has been illustrated in Figure [2.3]
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2.3.1 Analytical Modelling

Analytical modelling approaches rely on mathematical models that have a closed-form
solution to model the cloud-based service. These models are often built offline based on
theoretical principles and assumptions. Next, we further divide the analytical modelling

approach into queuing theory, dependability models and black box models.
Queuing theory

Queuing model and queuing network are widely applied for QoS modelling in the
cloud. They model the cloud-based services as a single queue or a collection of queues
interacting through request arrivals and departures. Specifically, a single queue has been
used to model the correlation of response time (or throughput) to CPU, number of VM
and workload. For example, depending on the assumption of the distribution on arrival
and service rate, the model can be built as M/G/c queue by Zhang et al. [I38], M/G/m
queue by Jiang et al. [77] , M/M/1 queue by E3-R [124] and JustSAT [125], and M/M/m
queue by Jiang et al. [78]. To create more detailed modelling with respect to the internal
structure of cloud-based services, multiple queues can be used to create QoS models:
Goudarzi and Pedram [69] apply multiple queues to model the response time for cloud-
based multi-tiered applications with respect to number of VM and workload. Their work
calculates average response time for the queue in the forward direction throughout the
tiers. In a similar way, Bi et al. [19] use a queuing network composed of an M/M/c
queue and multiple M/M/1 queues to estimate the correlation between response time and
number of VMs and workload for cloud-based application. Li et al. [93] apply a single
queue to model the correlation between response time and CPU, workload and thread. In
particular, the model contains finite capacity regions, which denote the place constraints
on the maximum number of jobs circulating in a subnetwork of queues. This is because

they are the simplest class of models that offer the features to describe performance
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scalability as a function of the software threading level and for the number of CPUs.
Unlike classical queuing model and queuing network, the Layer Queuing Network
(LQN) additionally model the dependencies arising in a complex workflow of requests to
cloud-based services and applications. Chi et al. [41] use LQN (i.e., based on M/M/n
queue) to model the QoS of application, which is response time with respect to CPU and
workload. CloudOpt [95] relied on LQN as the aggregate QoS model for all the services
contained by an application. It models only response time with respect to CPU and
workload. Li et al. [94] use LQN for model services in an application. Again, it only
captures response time with respect to CPU and workload. Zhu et al. [I142] have also used
LQN where the authors employ a global M/M /c queue for the entire on-demand dispatcher
and then a M/G/1 queue on each tier of an application. The former queue correlates the
response time to number of VMs while the latter queue models the relationship between

response time and CPU of the VM that contains the corresponding tier.
Dependability models

Dependability models are another widely used technique for QoS modelling in the
cloud. This approach focuses on the modelling of stable states for QoS attributes. For
example, Copil et al. [46] uses a graph representation to model the dependency between
per-service QoS and the necessary primitives. Although the graph can be updated at
runtime, the model is essentially analytical. In QoSMOS [2§], the authors analytically
solve the Markov Models (Discrete-Time Markov Chain and Markov Decision Process)
to model the QoS for services in an application. The model correlates QoS attributes
with hardware resources and workload. Huber et al. [75] uses Palladio Component Model
(PCM) as architecture-level QoS model since it allows to explicitly model different usage
profiles and resource allocations. Kateb et al. [51] uses model@runtime to correlate QoS
attributes with the number of VM. The modelling approach is essentially based on a

domain specific language, which does not only able to reason about the system at design
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time, but is also able to assist decision making during runtime.
Black box models

Black-box models are also popular, in which the QoS is modelled based on empirical
knowledge or statistical data of history [52], [23], [106], [54], [53], [8], [81],[7]. Among
others, CLOUDFARM [106] uses a empirical QoS model where the correlation between
certain QoS values and the required resource is captured (i.e., CPU). In particular, the
authors assumed that the magnitudes of resources to the QoS values is known, as specified
by the cloud service or application provider. The FoSII project [23] has also applied
empirical QoS models such that the correlation between hardware resource (i.e., CPU,
memory and bandwidth) and QoS is hard-coded using cases, each of which contains a
set of particular values of resource and their resulted utility value. Another work from
Emeakaroha et al. [54] propose an empirical model that maps the expected QoS values
with CPU, memory, bandwidth and storage. The model relies heavily on the assumption
of the system that being managed. Their extended work [53] is also based on a similar
approach, where the authors correlate the QoS attributes to different CPU, memory,
bandwidth and storage using manual and empirical mapping. The proposed mapping can
be as simple as one QoS attribute to one primitives, or a complex form where multiple
cloud primitives are associated with a QoS attribute.

Overall, analytical modelling has the advantage of simplicity and interoperability. In
particular, such modelling is usually highly intuitive and has negligible overhead when
applied for autoscaling in the cloud. However, analytical approaches often require in-depth
knowledge about the likely behaviours of the system being modelled. Consequently, their
effectiveness is restricted to the assumptions of service’s internal operations; such static
nature makes these approaches limited in coping with the dynamic and uncertainty at
runtime. Finally, both primitives selection and QoS function training phases in analytical

approaches are often static and offline. However, for some of the approaches (e.g., [28§],
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[51]), their QoS function training phase can be achieved in a dynamic and online manner.

2.3.2 Simulation Based Modelling

Various simulators exist for creating QoS models; here, conducting simulations is usually
a complex and expensive process and thus they are used in an offline manner. In practice,
simulation is required to be setup by the domain experts, who will often need to analyse,
interpret and profile the data collected after simulation runs. Specifically, Fernandez et
al [55] have relied on a profiling approach that builds the QoS model for each bundle of
VM offline. The process is similar to a simulation modelling approach. CDOSim [57]
is a framework that simulates the actual application in the cloud to restrict the search-
space for autoscaling and to steer the exploration towards promising decisions. CloudSim
[27] is a simulation toolkit that models QoS attributes (of VM) with respect to resource
allocation. It supports both single cloud and multiple clouds scenarios. As an extension of
CloudSim, CloudAnalysis [128] allows the simulation of QoS attributes for the application
deployed on geographically-distributed datacenters. Similarly, DCSim [83] simulates the
overall quality of resource autoscaling for the entire cloud.

Overall, simulation can produce good QoS models providing that the scenarios which
have been simulated are similar to those that would occur at runtime. However, similar
to the analytical approaches, simulation based modelling is also static and restricted by
the assumptions made in the simulators, e.g., distribution of workload and the effects of
QoS interference. In addition, it can be expensive to use as it often requires heavy human
intervention. Commonly, simulation based modelling approach is an offline process, in
particular, the QoS function training phases can be dynamic; while the primitives selection

phase is static.
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2.3.3 Machine Learning Based Modelling

The increasing complexity of managing services in the cloud makes the modelling diffi-
culty far beyond the capability of human analysis. To this end, recent works have been
leveraging the advances of machine learning algorithms. In the following, we survey the
key work that applies machine learning approaches for QoS modelling in the cloud. In
particular, we have classified them into two categories, these are: linear and nonlinear

modelling.
Linear modelling

Learning algorithms based on linear models for QoS modelling in the cloud can handle
linear correlation between a selected set of inputs (e.g, CPU, memory, number of VM,
workload etc) and output (i.e., QoS attributes), and they are sometime very efficient. Diao
et al. [48] propose a very early work on QoS modelling using Auto-Regressive and Moving-
Average (ARMA) and Multi-Inputs-Multi-Output (MIMO) model on-the-fly. Their work
is not cloud specific but it provides insight for many subsequent work on cloud based
QoS modelling. Simple linear models most commonly rely on linear regression, where
each primitive input is associated with a time-varying weight, e.g., Lim et al. [96], Zhang
et al. [I39] and Collazo-Mojica et al. [45]. More advanced forms exist, e.g., Padala
et al. [I07] have used ARMA trained by Recursive Least Squares (RLS). The authors
claim that the linear AMRA model is easy to be estimated online and can simplify the
corresponding controller design problem. The authors found that the second-order ARMA
model can predict the application performance with adequate accuracy. Kalivianaki et
al. [82] uses Kalman filter to update the QoS model. The authors claim that the Kalman
filter is optimal in the sum squared error sense under the assumptions that the system
is described by a linear model, and the process and measurement noise are white and

Gaussian.
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Linear machine learning algorithms are also commonly used with analytical approaches
to form QoS models. Specifically, Grandhi et al. [63] and Zheng et al. [140] have proposed
hybrid model: to model the multi-tiered application, they have relied on a modified LQN
where there are some time-varying coefficients. The authors then employ the Kalman filter
as an online parameter estimator to continually estimate those coefficients. Ghanbari et
al. [65] have also followed a similar approach, but through the use of k-mean clustering,
they additionally cluster the model into multiple sub-models based on different types
of workload. The approach proposed by Xiong et al. [134] has relied on a combined
model, where a M/G/1 queue is used to model the correlation between response time and
workload; while ARMA is used to model the relationship of response time and CPU.

There is limited work that attempts to capture the information of QoS interference in
the linear QoS model and they only focus on the VM-level [91], [116], [127], [99]. As an
example, Q-Cloud [IT6] has explicitly considered QoS interference by using the hardware
control primitives of all co-hosted VMs as inputs, rendering it in a MIMO manner. The

model itself is a simple linear model and it can be easily trained by using Least Mean

Square (LMS).
Nonlinear modelling

Learning algorithms based on nonlinear models for QoS modelling in the cloud is able
to capture complex and nonlinear correlation, in addition to the linear one. However,
it can also produce relatively large overhead than the linear modelling. Here, existing
work often aim to model the correlation between hardware control primitives (e.g., CPU,
memory and bandwidth) and QoS. The nonlinear modelling can be relied on kriging model
[62], Regression Tree (RT)[132], Artificial Neural Network (ANN) [90] [105] [87] , Support
Vector Machine (SVM) [43] [90] and change-point detection [20]. For example, Gambi
et al. [62] utilise kriging model, which is a spatial data interpolator akin to nonlinear

and radial basis functions, and it extends traditional regression with stochastic Gaussian
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processes. SmartSLA [132] employs Regression Tree (RT) and boosting to model the QoS.
RT partitions the parameter space in a top-down fashion, and organises the regions into
a tree style. The tree is then trained by M5P where the leaves are regression models.
The work from Kunda et al. [90] presents sub-modelling based on ANN and SVM for
correlating QoS with hardware control primitives in the cloud. Instead of building a
single model for a QoS attribute, they train n sub-models, whereby n is determined by
performing k-mean clustering based on the similarity between data values of QoS. This
is because they observe that large errors were mostly concentrated in a few sub-regions
of the output value space, indicating a single model’s inability to accurately characterise
changes in application behaviour as it moves across critical resource allocation boundaries.
The authors claim that the approach can be applied online.

Examples exist for cases where multiple linear and/or nonlinear machine learning
algorithms are used together. Zhu and Agrawal [I41] use a variant of ARMA and SVM
to model the correlation of QoS attributes to software and hardware control primitives.
In particular, the ARMA variant, which is trained by SVM, is used to link QoS and
software control primitives. Subsequently, another dedicated SVM is used to model the
relationship between software control primitives and hardware control primitives (i.e.,
CPU and memory in the work). Another work from Kousiouris et al. [88] correlates QoS
attributes with various primitives using ANN. Additionally, it applies a time-series ANN
to predict the workload in conjunction with the QoS models. This aims to provide more

accurate information when making prediction online.
Dynamic primaitives selection

All the aforementioned work regards the primitives selection as a manual and offline
process, most commonly, they have relied on empirical knowledge and heavy human
analysis to select the important primitives as the inputs of QoS models. Although not

many, there is some work that explicitly considers dynamic process in primitives selection,
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which tends to be more accurate and can be easily applied [85], [86], [I33]. As an example,
vPerfGuard [133] is a framework that correlates QoS attributes with respect to software
control primitives, hardware control primitives and environmental primitives. The authors
achieve primitive selection based on both filter (relevance based correlation coefficient)
and wrapper (i.e., hill-climbing comparison based on algorithms like k-nearest-neighbour
and linear regression etc). Linear regression is used as default to train QoS based on the

selected primitives.
Comparison of different learning algorithms

Given the various types of machine learning algorithms, it can be difficult to determine
which one(s) are the appropriate algorithms for QoS modelling in the cloud, with respect
to both accuracy and overhead. There are researches that have conducted detailed com-
parisons of different possible learning algorithms for QoS modelling in the cloud [103] [97]
[42], for example, Lloyd et al. [97] conduct an extensive experiment over various machine
learning algorithms (i.e., MLR, MRS and ANN) in cloud. They select the primitives based
on manual analysis. The results show that the relevant and useful primitives could be
different depending on the characteristics of services and application; and that different
machine learning algorithms achieve a variety of accuracy depending on the scenarios.

Overall, machine learning based modelling approaches have the advantage of requiring
limited human intervention, and care able to continually evolve themselves at runtime in
order to cope with dynamics and uncertainty. Nevertheless, depending on the learning
algorithm, the resulting overhead can be high (e.g., the nonlinear ones) and the accuracy
is sensitive to the given scenarios (e.g., fluctuation of the data trend). Generally, the
machine learning approaches can be applied as offline, online or a mixture of the both.
According to the existing work surveyed for QoS modelling in the cloud, we discover that
the QoS function training phase is often dynamic; while there is very little work that

intends to consider primitives selection phases as a dynamic process (online or offline),
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and the others have relied on offline and manual analysis. Therefore, we can conclude
that majority of the approaches that apply machine learning for QoS modelling are semi-
dynamic. In addition, we have also found that only a small amount of existing work
intends to consider QoS interference in the modelling; and they only focus on VM-level

interference.

2.3.4 Comparison of QoS Modelling to Workload and Demand

Modelling

Despite the fact that QoS modelling is fundamentally helpful for cloud autoscaling, it
can be difficult to achieve given the heterogeneity of possible primitives and the multi-
dimensional input space of QoS modelling. Therefore, some existing work on autoscaling
(e.g., [121] , [120], [87]) have considered simpler alternatives, i.e., model the workload
and demand for assisting autoscaling decision making. In those cases, the modelling is
reduced to a single dimension, where the core is to model the trend of the workload or
demand using its historical data. The models would be used to predict the likely value
at the next interval. However, the single dimension in workload or demand models do
not offer the ability to reason about the effects of autoscaling decisions and the possible
trade-offs. It is important to note that trade-off decisions making is a critical logical
aspect for autoscaling, and it is also one of the cores of this thesis. Therefore, this thesis

has explicitly focused on QoS modelling.

2.4 Granularity of Control

The ultimate goal of autoscaling is to optimise the QoS and cost objectives, which are
referred to as benefit, for all cloud-based services. To this end, the granularity of control
in autoscaling plays an integral role, since it determines which and how many objectives

should be considered in a decision making process of autoscaling. In the following, we

47



Granularity of Control

Service-Level VM-Level PM-Level Cloud-Level Multiple Levels

Figure 2.4: The Taxonomy of Granularity of Control for Autoscaling in Cloud.

classify existing cloud autoscaling approaches into different categories depending on what

level of granularity they tend to operate at. The taxonomy has been illustrated in Figure

24

2.4.1 Controlling at Service Level

Service level is the finest level of control in the cloud. It is worth noting that by service, we
refer to any conceptual part of the system being managed. As a result, control granularity
at the service level may refer to independently controlling/scaling an application, a tier
of an application or a cloud-based service.

Specifically, most work has focused on controlling each cloud-based application. These
approaches have relied on controlling the QoS and/or cost for each individual application

in isolation, and therefore, they regard an application as a service. Examples of such

48



include: [121], [125], [55], [45], [141], [93], [77], [30], [68] and [85]. To describe some of
them in detail, Lim et al. [96] control the application and its required VM, in which
case an application is regarded as a service. Sedaghat et al. [120] regard application as a
service, and considered the required number of VMs and the fixed VM bundles for such
service. Jiang et al. [78] control each application, each of which is, again, regarded as a
service and therefore it is essentially service-level control. In addition, the authors group
VMs into different fixed bundles.

There is also existing work that controls cloud-based service in general, which can be
regarded as any conceptual part of a cloud-based system. Copli et al. [46] control the QoS,
cost and their elasticity for each service deployed in the cloud. Yang et al. [136] control the
cost of individual cloud-based services. The FoSII project [23] controls individual cloud-
based service, their QoS and cost. [62] control at the service level, where the controller
decides on the optimal autoscaling decision for cloud-based service in isolation. QoSMOS
[28] explicitly focuses on each individual service, and adapting it in isolation. Kateb et
al. [51] consider many services are encapsulated in the application, and the authors focus
on each service in isolation. The E3-R framework [124] and Frey et al. [59] control each

service, including their composition and autoscaling.

2.4.2 Controlling at Virtual Machine Level

VM level means that the control and decision making operate at each VM. In particular,
certain work assumes a one-to-one mapping between application (or a tier) and VM
and thus they can be categorised as either service level or VM level granularity. To
better separate them from the pure service level granularity of control, these work are
regarded as VM level granularity. Specifically, FC2Q [12] regards application tier and VM
interchangeably, therefore controlling each tier of an application is equivalent to control

each individual VM. Similarly, Kalyvianaki et al. [82] control a tier of an application that
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resides on a VM, and the authors only focus on CPU allocation of a VM. Wang, Xu and
Zhao [126] control the cloud in a per-VM basis, and each VM is adapted in isolation.
VScale [137] focuses on vertical scaling only and hence the control granularity is per VM.
Zhang et al. [I39] assume only one application per VM, and control the deployed VM
in isolation correspondingly. Guo et al. [70] control the application deployed on the VM
and the authors assume one application per VM. Similarly, Matrix [43] has used VM level

control as there is only one application per VM.

2.4.3 Controlling at Physical Machine Level

Autoscaling decision making on each PM independently is referred to as PM level control.
The primary intention of PM level control is to manage the QoS interference caused by
co-hosted VMs. Among the others, Xu et al. [I13] control the VMs collectively at the
PM level, in this way, it tries to promote better management of QoS interference. The
extended work from Xu et al. [135] consider QoS interference at the VM level, therefore
the granularity of control is based on each PM. Similarly, Bu et al. [26] considers VM
level QoS interference and thus the control is for each PM. Minarolli and Freisleben
[105] consider all the co-hosted VM in conjunction with each others and thus its control
granularity is at the PM level. Lama et al. [91] control at the PM level in order to handle

QoS interference.

2.4.4 Controlling at Cloud Level

The most coarse level of control granularity is at the cloud level. The majority of the work
achieves autoscaling at the cloud level by using a centralised and global controller, with
an aim to manage utility ([41], [15], [60], [§], [106]), profits ([94], [142]) and availability
([52]). Among others, Ferretti et al. [56] control the QoS for all cloud-based services in a
global manner. However, the actual deployment can be either centralised or decentralised.

Similarly, CRAMP [16] uses a centralized and global controller, it controls the entire cloud
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for cost and QoS. CloudOpt [95] also controls the entire cloud using centralised control, as
the considered optimisation involves all the PM in the cloud. Zhang et al. [138] control
the cost of the entire cloud with respect to how the VM instances of Amazon can be
utilised. BRGA [7] maintains global view of the entire cloud, and thus it belongs to
cloud level control. The FOSII project [102] also controls the entire cloud in a centralised
manner, where the goal is to manage the entire cloud at infrastructure level.

Some of the developments have relied on a decentralised manner where a consensus
protocol is employed for controlling at the cloud granularity. For example, Wuhib et al.
[131] aim to control the entire cloud, and thus the QoS and the overall power consumption
of cloud can be collectively managed. In the mean time, they have relied on decentralised

deployment, which can reduce the overhead of cloud-level control.

2.4.5 Controlling at Multiple Levels

Some work operates at multiple levels, with an aim to better manage the overhead and
global benefit. For example, Minarolli and Freisleben [104] combine both PM level and
cloud level control, where the PM level is decentralised and the objective is to optimise
the utility locally. Similarly, SmartSLA [I32] aims to control the resource allocation for
all the cloud-based services, therefore it utilises a global, cloud-level control in addition
to the decentralised local control on each VM.

In summary, the finer granularity of control implies that it is harder to achieve globally-
optimal benefit but likely to generate smaller overhead. On the other hand, globally-
optimal benefit can be easier reached with large overhead if the granularity of control
is coarser. All of the approaches surveyed operate at static and fixed granularity of
control, even for the hybrid ones. As a result, given the time-varying QoS sensitivity and
interference in cloud, they can be inflexible for any runtime changes about the effects of

control granularity to the global benefit.
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Figure 2.5: The Taxonomy of Trade-off Decision Making for Autoscaling in Cloud.

2.5 Trade-off Decision Making

The final important logical aspect in cloud autoscaling is the challenging decision making
process, with the goal to optimise QoS and cost objectives. It is even harder to handle
the trade-off between possibly conflicting objectives. Such decision making process is
essentially a combinatorial optimisation problem where the output is the optimal decision
containing the newly configured values for all related control primitives. In the following,
we survey the key work on the decision making for cloud autoscaling. In particular,
we classify them into three categories, these are Rule Based Control, Control Theoretic

Approach and Search Based Optimisation. The taxonomy has been illustrated in Figure

2.5
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2.5.1 Rule Based Control

Rule-based control is the most classic approaches for making decision in cloud autoscaling.
Commonly, one or more conditions are manually specified and mapped to a decision, e.g.,
increase CPU and memory by z if the throughput is lower than 3. Therefore, the possible
trade-off is often implicitly handled by the conditions and actions mapping. Specifically,
Cloudline [60] allows programmable elasticity rules to drive autoscaling decisions. It is
also possible to modify these rules at runtime as required by the users. Copil et al. [40]
handle the decision making process by specifying different condition-and-actions mapping
for autoscaling in the cloud. In addition, the rules can be defined at different levels,
e.g., PaaS and laaS. Similarly, Ferretti et al. [56] allow to setup mapping between QoS
expectation and actions using XML like notations. The autoscaling decision making in
the work from Emeakaroha et al. [52] is also based on predefined rules, in addition, a
simple heuristic algorithm is used to search for the best available VMs. Rule based control
for autoscaling decision making can be also found in other work, e.g., Wuhib et al. [131],
Manuer et al. [I02], Han et al. [71] and Chazalet et al. [30].

Overall, we discovered that all the rule based autoscaling decision making approaches
have considered both vertical and horizontal scaling as the final actuations in the cloud.
Generally, rule based control is a highly intuitive approach for autoscaling decision making,
and it also has negligible overhead. However, the static nature of the rules requires to
assume all the possible conditions and the effects of those decisions that are mapped to the
conditions. In addition, the fact that they heavily rely on human intervention and analysis
can quickly become an issue. Consequently, they tend to be limited in dealing with the

dynamics and uncertainties in cloud, especially when there are complex trade-offs.
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2.5.2 Control Theoretic Approach

Advanced control theory is another widely investigated approach for autoscaling decision
making in cloud because of its low latency and dynamic nature. However, it is difficult
to explicitly reason about the effects of possible trade-off decisions in a control theoretic
approach.

Among the others, classical controllers (e.g., Proportional-Derivative control [15] [96]
[16], Kalman control [82] [63] and Fuzzy control [12] [10] [126] ) are commonly designed as
a sole approach to make autoscaling decisions in the cloud. Specifically, ARUVE [15] and
CRAMP [16] utilises a Proportional-Derivative (PD) controller, where the proportional
and derivative factors do not depend on a QoS model of the application or the infrastruc-
ture dynamics, and support proactive resource allocation for the application server tier
with dynamic scaling of web applications in a shared hosting environment. Anglano et al.
[12] and Albano et al. [10] apply fuzzy control that is updated by fuzzy rules at runtime.
The aim is to optimise both QoS, cost and energy by autoscaling hardware resources. Al-
though the authors claim they can cope with any hardware resources, the approach only
focus on CPU allocation. They have also assumed that QoS interference rarely occurs.
Kalyvianaki et al. [82] and Grandhi et al. [63] use MIMO model and Kalman controller
for making autoscaling decisions, and the authors aim at response time by autoscaling
CPU on a VM.

Control theoretic approaches can be sometime used with other algorithms to better
facilitate the autoscaling decision making [134], [104], [70), [114], [141], [9T]. Particularly,
the gains in the controllers can be further tuned by optimisation and/or machine learn-
ing algorithms, and this is especially useful for Model Predictive Control (MPC). Among
others, Zhu and Agrawal [141] utilise a Proportional-Integral-Derivative (PID) and rein-
forcement learning controller for decision making with respect to adapting software control

primitives. Such result is then tuned in conjunction with the hardware control primitives
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using exhaustive search. The QoS attributes and cost are formulated as weighted-sum re-
lation. The autoscaling decision making process in APPLEware [91] have relied on MPC,
which involves optimising a cost function that expresses the local control objectives and
resource constraints over a time interval. The current state of the local application and
the control decisions made by neighbouring controllers of a VM are taken into account to
perform the optimisation using quadratic programming solver.

In summary, we discovery that the majority of the control theoretic work have con-
sidered both vertical and horizontal scaling as the final actuations in the cloud. Overall,
the control theoretic approaches are efficient for making autoscaling decisions. However,
the major drawback of control theoretic approaches is that they require to make many
actuations on the physical system, in order to collect the ’errors’ for stabilising itself. This
means that amateur decisions are very likely to be made. In addition, the trade-offs are

only implicitly handled.

2.5.3 Search Based Optimisation

A large amount of existing work relies on search-based optimisation, in which the deci-
sions and trade-offs are extensively reasoned in a finite, but possibly large search space.
Depending on the algorithms, search-based optimisation for autoscaling decision making
in the cloud can be either explicit or implicit—the former performs optimisation as guided

by explicit system models; while this process is not required for the later.
Implicit search

As mentioned, the implicit and search-based optimisation approaches for autoscaling
decision making do not use QoS models. Similar to the control theoretic approaches, the
implicit search is also limited in reasoning about the possible trade-offs. For example, the
work from Xu et al. [113] , [135] applies a model-free Reinforcement Learning (RL) ap-

proach for adapting thread, CPU and memory for QoS and cost. The approach is however
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implicit, providing that there is neither explicit system models nor explicit optimisation.
The authors have considered QoS interference during autoscaling. Similarly, VScale [137]
utilises RL for making autoscaling decisions, which are then achieved by vertical scaling.
The RL is realised by using parallel learning, that is to say, the authors intend to speed
up agent’s learning process of approximated model by learning in parallel. Therefore, the
agent does not have to visit every state-action pair in a given environment.

The approaches that rely on demand prediction (e.g., the Autoflex [11], PRESS [68],
[120], [29], [44] and [79]) are also regarded as implicit search. This is because the au-
toscaling decision is essentially predicted by the demand models, without the needs of

reasoning or optimisation process.
Explicit search

In search-based optimisation category, the explicit approaches for autoscaling decision
making rely on the explicit QoS models to evaluate and guide the search process. De-
pending on the different formulations of the decision making problem for autoscaling in
the cloud, explicit search can reason about the effects of decisions and the possible trade-
offs in details. In this thesis, we have surveyed the approaches that rely on three the
most commonly used formulations, these are single objective optimisation, weighted-sum
optimisation, and Pareto optimisation.

It is common to optimise only a single objective (e.g., cost or profit) for autoscaling
in the cloud, providing that the requirements of the other objectives are satisfied (i.e.,
they are often regarded as constraints) [136], [138], [85], [125], [45], [75], [121], [120], [95],
[17], [43], [99]. For example, Kingfisher [121] and Sedaghat et al. [120] use Integer Linear
Programming (ILP) to optimise the cost for scaling the CPU and memory for VMs of an
application while regarding the demand for satisfying QoS as constraint. Sedaghat et al.
[120] has additionally assumed fixed VM bundles. Similarly, CloudOpt [95] models the

decision making for autoscaling using a weighted-sum of different aspect of cost, which is
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still regarded as single objective optimisation, and the optimisation is then resolved by
mixed integer programming approach. A recent extension of ARUVE [17] formulates the
decision making in autoscaling as a single optimisation on cost, which is resolved by using
Ant Colony Optimisation (ACO).

To apply search based optimisation for autoscaling in the cloud, the most widely solu-
tion for handling the multi-objectivity is to aggregate all related objectives into a weighted
(usually weighted-sum) formulation, which converts the decision making process into a
single objective optimisation problem. The search based algorithm include: exhaustive
search [41] [28] [62] [78], auxiliary network flow model [94], force-directed search [69], bi-
nary search [81]. For example, the FoSII project [23] [101] regards the autoscaling decision
making as case based reasoning process, where the decision is made by looking for similar
cases from the past and reusing the solutions of these cases to solve the current one. The
case and solution pairs are linked to aggregative utility values based on the analytical
model, thus the reasoning process is essentially an optimisation for the optimal decision
using exhaustive search algorithm. Goudarzi and Pedram [69] use a weighted-sum for-
mulation containing QoS and cost for an application tier. The optimisation is resolved
using force-directed search, in which an initial solution based on the solution given for the
profit upper bound problem is generated. Next, distribution rates are fixed and resource
sharing is improved by a local optimisation step.

Some work has relied on more advanced and nonlinear search algorithms, ranging
from relatively simple ones: dynamic programming [106] and local-search strategy [§],
to more complex forms: grid search [I32], decision tree search [55] [99] and quadratic
programming [I07]. For example, CLOUDFARM [106] addresses the decision making
based on a weighted-sum utility function of all cloud-based application and services. The
decision making process is formulated as a knapsack problem, which can be resolved by

dynamic programming. In SmartSLA [I32], the decision making for autoscaling is aimed
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for optimising SLA penalty, which is essentially based on the aggregation of expected QoS
values. The optimisation is resolved using a grid search algorithm. To optimise weighted-
sum utilisation, Amiya et al. [99] have explicitly aimed to mitigate QoS interference in the
cloud using heuristic based decision tree search, however, they only intend to autoscale
software control primitives.

Metaheuristic algorithms are also popular for autoscaling decision making in the cloud,
because they can often efficiently address NP-hard problems with approximated results.
The most common algorithms include: Tabu Search [142], Genetic Algorithm (GA) [139]
[105] [7] , Particle Swarm Optimisation (PSO) [139]. As an example, Zhu et al. [142]
formulate the autoscaling decision making as optimise a weighted-sum formulation of
response time and cost. To optimise the objectives, the authors apply a hybrid Tabu
Search, which, in every iteration, the current matrix is disturbed and a new decision is
generated as initial solution of gradient descent. After reaching a particular fixed point,
the variation of profit is calculated and the best configuration is returned.

Finally, Pareto relation can explicitly handle multi-objectivity for autoscaling in the
cloud without the need to specify weights on the objectives [51], [93], [124], [59]. For
example, Kateb et al. [51] formulate the decision making process as Pareto-based multi-
objective optimisation, which is solved by Multi-objective Genetic Algorithm (MOGA,
e.g., NSGA-II). At each generation, MOGA identifies non-dominating solutions. Crowd-
ing distance is used to calculate the distance between an individual and its neighbours.
In particular, each generation of the search is evaluated using epsilon dominance which is
a relaxed form of the commonly used Pareto-dominance metric. In E3-R [124], the deci-
sion making problem is formulated as Pareto front, where it is resolved by using MOGA.
In addition, the approach applies objective reduction technique with an aim to remove
the objectives, which are not significantly conflicted with the others, from the decision

making process. In this way, the author aims to reduce the overhead while not affecting
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the quality of decisions.

In conclusion, we discover that around two thirds of the surveyed search based ap-
proaches have considered both vertical and horizontal scaling as the final actions in the
cloud. Overall, the nature of search-based optimisation permits certain level of reasoning
during the decision making, and this presumably provides better assurance on the quality
of the decisions before conducting the actual scaling actions. As we can see, there are
small amount of the approaches surveyed belong to implicit search, which can be efficient
as there is no need for QoS modelling. Nevertheless, the absence of QoS models also
mean that they cannot explicitly handle the trade-offs. On the other hand, the other
approaches make use of the explicit search, however, majority of those work formulate
the problem as single objective or rely on weighted-sum of objectives, and hence their
search of possible trade-offs decision tend to be limited in terms of both optimality and
diversity. A limited amount of effort has considered Pareto relation, however, none of
them have considered well-compromised trade-off, i.e., the decisions that have balanced
improvements on the related objectives. Finally, QoS interference is often ignored in au-
toscaling decision making, even if it is considered, there is no explicit solution for handling

the related trade-offs.
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2.6 Positioning This Thesis

The number of reviewed papers is a result of an investigation over the key conferences
and journals for cloud computing, service computing and self-adaptive systems, such as,
SEAMS, IEEE CLOUD, UCC, TSC and TCC etc. They were then carefully selected
according to their recentness, relevance, quality and completeness of evaluations, with re-
spect to our research questions for cloud autoscaling. However, the resulting list of papers
is not exhaustive, but our investigation and search have tried to improve its conclusiveness
as much as possible.

We further extract the surveyed work by removing similar ones from the same research
group, this results in 74 papers. Table[2.1|summaries the 74 papers and they are compared
using various key criteria of the autoscaling process. The criteria used to compare different
approaches are derived from the key aspects that can affect the designing of autoscaling
system, the formalization of the problem, and the quality of autoscaling process. Their
inclusion is intended to cover the common decisions that need to be made for research in
the field of cloud autoscaling, in this way, a general and normalized comparison is made
possible. It is worth noting that all the criteria serve as the raw data for producing the
taxonomy. That is to say, the classification in this chapter is largely derived from the
results presented in Table 2.1} In Table 2.2 we collectively discuss how this thesis is
different from this work. Notice that not all the work covers every criteria, e.g., the work

on QoS modelling might not cover the aspect of decision making.
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Table 2.2: Comparison of the Thesis with Other State-of-the-Art Researches

Criteria

Comparison

Knowledge
in  Archi-
tecture

As we can see from the Knowledge in Architecture column, from an archi-
tecture perspective, there is a considerable amount of the existing work (i.e.,
32 out of 74) that do not intend to discuss the required levels of knowledge
and what benefit such knowledge can bring for adaptations. The remaining
work, on the other hand, only implicitly discuss the knowledge required in
a rather coarse granularity (e.g., system model is needed for optimisation).
The absence of explicit consideration for the fine-grained representation of
the knowledge in the architecture can results in, e.g., improper inclusion
of unnecessary knowledge and/or missing important knowledge that can
improve adaptation quality when developing autoscaling systems. Conse-
quently, this fact can mislead the design and application of the underlying
algorithms and techniques. In contrast to the other work, this thesis, as
we will see in Chapter [3, proposes an autoscaling architecture with fine-
grained representation of the required knowledge, which are mapped to the
principles of self-awareness [18].

Considered
Entity

The Considered Entity column describes which level of abstraction that the
work intends to model and scale. Only 12 out of 74 work have considered
cloud-based service, which is the finest level of abstraction to be scaled
in the cloud. The majority of the work (i.e., 60 out of 74) aim at cloud-
based application (or application tier) and the rest focus on other levels.
This thesis has considered the level of cloud-based service, because it offers
better flexibility and the finest modelling granularity in the cloud, as we
will discuss in Chapter [

Objectives

As we can see from the Objectives column, certain amount of work (i.e., 18
out of 74) consider only specific objectives (e.g., response time and cost)
in autoscaling, which will limit their applicability. In contrast, this thesis
aims for any given QoS attributes and cost as the objectives, providing the
flexibility of the proposed QoS modelling approach, which will be discussed
in Chapter [4 and [} As we can see, there is also another amount of the
related work that can handle arbitrary QoS attributes, i.e., 37 out of 74
work surveyed. However, their underlying algorithms and techniques are
different from this thesis.
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Objectives
Depen-
dency

As shown in the Objectives Dependency column, most work (i.e., 54 out of
74) do not explicitly consider multiple objectives or they do not intend to
handle the objective dependency exhibited by the multi-objectivity. There-
fore, they can not produce good trade-off decisions. For the work that
does consider multiple, and possibly conflicted objectives, the objective de-
pendency is usually formulated as a weighted-sum relation (i.e., 16 out
of 74). Only 4 out of 74 work have used Pareto relation to model multi-
objectivity with the aim to provide fine-grained information about the trade-
offs. However, these approaches have not considered decisions that achieve
well-compromised trade-offs, meaning that the trade-offs can be imbalanced.
Unlike that work, this thesis not only models multi-objectivity as Pareto re-
lation, but also intend to search for decisions that achieve well-compromised
trade-offs using nash dominance and distance of decisions.

Primitives

The Primitives column shows what are the cloud primitives that a work
has considered. Most work (i.e., 60 out of 74) have only considered specific
dimensions (e.g, CPU and memory) of the primitives in the cloud, which
will limit their applicability. In contrast, this thesis and the remaning small
amount of related work focuses on any given primitives. In addition, this
thesis also additionally considers software control primitives and their in-
terplay with the hardware resources, which are the important, but often
ignored cause of the fluctuation in QoS. As we can see, there are only 14
out of 74 approaches in the work surveyed have considered software control
primitives. However, this thesis applies different algorithms and techniques
which offers various benefits, as we will see in the following chapters.

Use Bun-
dles

As in the Use Bundles column, modern cloud providers (e.g., Amazon)
enable autoscaling based on bundles, which is a collection of some fixed
configurations (usually at coarse granularity). The benefit is that by limiting
the possible autoscaling decision using bundles, the decision making process
can be greatly simplified, in which case a simple exhaustive search would be
also quite effective. Therefore, 20 out of 74 work has assumed fixed bundles
in their autoscaling approaches. However, these fixed bundles cannot meet
the increasingly complex demand of cloud-based services, e.g., a cloud-based
service may require high CPU but low memory. Consequently, this fact will
negatively affect the quality of autoscaling and elasticity. There is a large
amount of related work (i.e., 54 out of 74) that does not assume fixed
bundles, which are the same as this thesis. However, this thesis applies
different algorithms and techniques in the decision making process which
offers various benefits, as we will see the the following chapters.
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QoS Inter-

ference

As mentioned previously, QoS interference is an important factor to elastic-
ity in the cloud. Inadequate handling of QoS interference can result in low
quality of autoscaling and elasticity. However, as shown in the QoS Inter-
ference column, only 8 out of 74 work on cloud autoscaling have explicitly
modelled and/or handled QoS interference in the cloud autoscaling, but
they either ignore or tend to be limited in handling the trade-offs caused by
QoS interference. This thesis is different from the related work in the sense
that it does not only explicitly model QoS interference, but also effectively
resolve the trade-offs between cloud-based services that caused by QoS in-
terference. In addition, we collectively consider QoS interference caused
by both the co-located service and co-hosted VM, which has not been well
studied in existing work. We will discuss this in the following chapter with
greater details.

Modelled
QoS  At-
tribute

The Modelled QoS Attribute column indicates what are the quality at-
tributes that the autoscaling approach intends to model, excluding the cost.
Modelling in autoscaling can greatly improve the decision making process.
21 out of 74 work do not explicitly handle and model QoS while 19 work
model certain dimensions of QoS only (e.g., response time). Similar to the
rest of related work, this thesis models any given QoS attributes. However,
as we will see in Chapter [4 and [5], the underlying QoS modelling approach is
different. As mentioned previously, apart from modelling QoS, autoscaling
approaches can also rely on workload or demand modelling. However, these
models cannot be used to reason about the effects of decisions on the objec-
tives. We leave the study about whether and how the workload or demand
models can be used to consolidate the QoS model as one of our future work.

Modelling
Status

The Modelling Status column indicates whether the approach can be applied
for online modelling. As we can see amongst the approaches that handle
QoS modelling, 34 out of of 53 work only focus on offline while the rest can
be applied online. The benefit of offline modelling is that there is no need
to concern with the modelling overhead, however it is unable to cope with
emergent events, e.g., spike workload. On the other hand, online modelling
can be used to deal with unexpected scenarios, but its overhead can be a
critical issue. This thesis focus on online modelling, however, when offline
modelling is beneficial for online scenarios, the proposed approach can be
also used offline.
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Primitives
Section for

QoS

Primitives Section for QoS shows the algorithms and techniques used to
select important inputs for QoS models. As we can see, amongst the ap-
proaches that model QoS, nearly all (i.e., 50 out of 53) of the related work
have relied on manual and offline approach for the selection. However, man-
ual analysis may ignore important features or incorrectly select irrelevant
features, which would eventually downgrade the model accuracy. There
are only three of the work have considered dynamic primitives selection;
however, they focus on the relevance of the inputs while ignoring the redun-
dancy of the inputs which have already selected. This fact, as we will show
in Chapter o can also negatively affect the model accuracy. This thesis is
separated form existing work in the senses that the primitive selection is
performed dynamically, and with the consideration of balanced information
relevance and redundancy.

QoS Func-
tion Train-
ing

QoS Function Training shows the algorithms and techniques used to model
the correlation between selected primitives and the QoS. There are work
relies on manual and analytical approaches; have used simulation and the
rest are machine learning based. However, all the approaches are relied
on single algorithms, i.e., only one algorithm is used offline or online. In
Chapter [5] we will show that different algorithms perform quite differently
under given scenarios, therefore, such a fact means that the selecting the
most appropriate single algorithms for QoS modelling in the cloud is mere
difficult, if not possible to achieve. In addition, even it can be selected,
there is no guarantee that it can be always the best at runtime. Although
in the case of modelling workload and demand, we have discovered 2 work
that considered multiple learning algorithms, there is still no instance for
QoS modelling. As we will see in Chapter [3] this thesis relied on multiple
algorithms where the optimal one would be used for modelling and predic-
tion. It is also different from the ones for demand and workload modelling
in the sense that it focus on selecting the best algorithm on-the-fly; while
[79] aim at ensemble solution at runtime and [72] is an offline approach.

Granularity
of Control

Granularity of Control shows at which granularity level the autoscaling
decision would be made. As we can see, 2 out of 74 work have use multiple
levels of granularity while the rest work have assumed a single granularity
in autoscaling. However, they are static and fixed on the granularity of
control. This means that, once the effects of control granularity on the
global benefits changes (e..g, due to QoS model change), they would not
be able to optimise for the global benefits; or they would have been in a
unnecessarily high level of control (e.g., cloud level) that benefit nothing
but generating extra overhead. Unlike any of the existing work, this thesis
work on dynamic granularity of control, in which the control level can be
changed at runtime subject to QoS sensitivity and deployment. We will
discuss this in greater detail in Chapter @
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Decision
Making

Decision Making shows the algorithms and techniques used to perform
trade-off decision making for autoscaling in the cloud. We can see that
8 out of 74 work are rule-based approaches and hence they tend to be lim-
ited in handling dynamics, uncertainty and trade-offs in cloud. 14 out of 74
work are based on control theory, which can not explicitly handle trade-off
decision making. Among the reset search based optimisation for autoscaling
in cloud, 9 take implicit approach, e.g., model free RL, which do not guided
by explicit QoS model and hence they tend to be limited in reasoning about
the trade-offs. 12 of the work assume single objective and apply algorithms
that only work on single objective optimisation. A large amount of the
work (i.e., 16 out of 74) aggregate multi-objective into a weighted-sum for-
mulation, and resolve the decision making as single objective optimisation.
However, it is generally difficult to correctly specify the weights, in addition,
weighted-sum formulation can restrict the quality of trade-offs. There are
only 4 work have considered pareto relation of the multi-objectivity, and
they rely on MOGA, mostly NSGA-II for the optimisation. Different from
all the existing work, this thesis formulates the trade-offs decision making
problem in autoscaling using pareto relation where the multi-objective opti-
misation is resolve by Multi Objective Ant Colony Optimisation (MOACO).
This is because the commonly applied MOGA, such as NSGA-II, needs
pareto-dominance to evaluate the overall quality of decisions for all objec-
tives as the algorithm runs, hence it can be restricted by an inevitably large
number of non-pareto-dominated decisions when the number of objectives
increases. Such fact has been shown to be limited in optimising and making
trade-off for more than 4 objectives [33] while our problem needs to handle
larger number as we consider the trade-offs caused by QoS interference. We
will discuss this in Chapter [7] with greater details.

Well-
Compro-
mised
Trade-offs

As we can see from Well-Compromised Trade-offs, none of the existing work
have considered well-compromised trade-offs, which means the achieved de-
cisions may lead to imbalanced improvements on the objectives. In con-
trast, this thesis explicitly aim to search for decisions that achieve well-
compromised trade-offs, as we will show in Chapter [7]

According to the above table, It may seem that the proposed autoscaling framework

introduce various positive points as when compared to existing work. However, this does

not come as free. In the following, we discuss some potential negative aspects of our

framework:

e Scalability: Given the fact that our approach aims to handle dynamics and uncer-
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tainty at runtime, making the autoscaling process self-aware is likely to produce
extra computational effort, which in turn imposes scalability issue. However, as
we will discuss in Chapter 7, our methods and approach has been designed in the
way that takes scalability into account. For example, the whole idea of dynamically
determining the granularity of control in cloud is aimed to improve scalability. This
is because there may be some period of time that the autoscaling system operates at
fine-grained control can still yield the optimal benefits, and such control would also
produce less overhead, as the number of objectives in a decision making process is
reduced. Dynamically switch the system to fine-grained control would potential, in
a long term, improve the overall scalability. In Chapter 7, we will discuss scalability

of our framework in greater details.

Complezity: The self-awareness in our framework is fundamentally grounded on
advance computational intelligence techniques, which may need to be tuned by
adjusting their parameters. To achieve such, it does requires some knowledge about
the underlying algorithms and some profiling techniques. In Chapter 7, we will

discuss the complexity of applying our framework in greater details.

Integration with existing autoscaling system: There may be scenarios where it is
difficult to apply the entire autoscaling framework, e.g., when there is a legacy
autoscaling system and it is too expensive to replace it. To mitigate this issue, we
have designed each component in a way that they can be seamlessly attached to
existing modules, in order to achieve certain tasks (e.g., QoS modeling). In Chapter

7, we will discuss practical deployment of our framework in greater details.
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2.7 Conclusion

In this chapter, we described the background and definitions for cloud autoscaling, self-
aware and self-adaptive systems in general. Subsequently, we outlined the major re-
quirements for the key logical aspects of autoscaling in the cloud, and discuss the key
state-of-the-art developments proposed for each of the logical aspects. Furthermore, we
explicitly discussed the differences of this thesis to the related work and identified the gap
in this area of research.

In the next chapter, we propose a self-aware architecture for autoscaling in the cloud,
which is enabled and driven by mapping the necessary components to different levels of

self-awareness capabilities.
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CHAPTER 3
AN ARCHITECTURE FOR SELF-AWARE
AND SELF-ADAPTIVE AUTOSCALING IN

CLOUD

3.1 Introduction

Engineering and design autoscaling system in the cloud is a complex process due to the
dynamic and uncertain nature of cloud environment. As discussed in Chapter [2, most of
the prior work e.g., [I41] [23], tend to be limited in one or more logical aspects of the
autoscaling process. This can be attribute to the fact that their approaches, especially
their architectures, lack to capture the necessary knowledge for optimising the QoS and
cost objectives of all cloud-based services. These knowledge can be well-represented and
acquired through self-awareness at runtime, and thus render self-awareness as a neat
solution to overcome the limitation in existing work.

The autoscaling architecture, being the skeleton of an autoscaling system, is a fun-
damental element that blueprints the necessary components and their interactions. We

argue that incorporating the principles of self-awareness at the architecture level is likely
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to advance the way we engineer self-aware and self-adaptive autoscaling system.

3.1.1 Motivation

Given the definition of autoscaling presented in Chapter [I] and our discussion in Chapter
2], it is clear that autoscaling systems are essentially self-adaptive systems. One general
task for architecting self-adaptive systems is to determine what is the necessary knowledge
that the system maintains, and how the knowledge can be acquired. Designing autoscal-
ing system in the cloud is not an exception. As mentioned in Chapter [2, the inadequacy
of necessary knowledge can resulted in various limitations of the system. This includes,
for examples, the absence of accurate QoS models causing the system not be able to
reason about the likely effects of adaptation and the possible trade-offs; or ignoring QoS
interference can degrade the effectiveness of the autoscaling. The difficulty lies in how to
classify the necessary knowledge of an autoscaling system and more importantly, how to
acquire such knowledge and how they can improve the adaptation. As we mentioned in
Chapter [T} given the heterogeneous, elastic and on-demand nature of cloud, autoscaling in
the cloud exhibits high dynamics and uncertainty related to QoS modelling, granularity
of control and the trade-off decision making. These unique problems are within the scope
of self-awareness principle and its capabilities [I8], and hence rending it as a promising
solution for autoscaling in the cloud. However, the challenge now becomes how to in-
corporate and map the principles of self-awareness to autoscaling in the cloud, how the
architecture can be enriched and how we can carefully justified benefits of self-awareness
capabilities.

As we have extensively surveyed in Chapter 2], existing autoscaling architectures have
heavily relied on traditional styles (e.g., MAPE [84] and OAD [74] based) for self-adaptive
systems, which are focus mainly on the interactions among different logical aspects of a

system and their degree of centralisation. However, these architecture styles lack in cap-
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turing different levels of knowledge in a fine-grained representation. In particular, the
widely adopted MAPE style in autoscaling architecture only model the knowledge in a
coarse grained manner. Therefore, the MAPE is only capable to implicitly consider the
self-awareness of the knowledge that the system requires. From an architecture perspec-
tive, this is not immediately intuitive to deduce which concerns the system addresses in
the adaptation. OAD is another style that claimed to be self-aware, however, instead of
explicitly model different levels of knowledge, it emphases on a separation or decoupling
between the representation of the knowledge and the decision making process. Autoscaling
architecture based on feedback loop control that embedded with computational intelli-
gence or control theory techniques are also exist, e.g., [I41]. Nevertheless, they either do
not consider self-awareness and how it can be used to strength the adaptation or such con-
sideration is implicit. In addition, they are problem specific and do not model the generic
concern of knowledge, e.g., with respect to goal, time and interaction. The absence of
fine-grained representation of knowledge in the architecture can mislead the design and
application of the underlying computational intelligence and/or economic driven tech-
niques. As a result, all those limitations call for novel autoscaling architecture, which
should encapsulate fine-grained information about what levels of knowledge are required;

how they can be acquired and how they can be beneficial for the adaptation.

3.1.2 Contributions

In this chapter, we present an autoscaling architecture leverages on the principles of self-
awareness and its mapping to various self-awareness capabilities. By doing so, we obtain
an enriched architecture with detailed information about what are the necessary levels
of knowledge and their interplay. These levels of knowledge and their interplay promotes
better self-adaptivity through bi-directional adaptation in the architecture, in which the

autoscaling process is not only able to adapt the underlying cloud-based services and
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oS models, cost models and
regions

QoS models

QoS Modeler Region Controller Decision Maker

Raw data Sensor Actuator Decisions

Figure 3.1: The Components of Autoscaling Architecture.

VMs, but also capable to further consolidate itself by acquiring the knowledge about
itself and the environment. It is worth noting that we only focus on high level view of
the architecture in this chapter, the details of each component in the architecture and the

related algorithms will be explained in the subsequent chapters.

3.2 Autoscaling Architecture

As concluded by a recent survey [98], the most common components in the simplest
autoscaling system includes a monitor and a scaling unit: the former gathers the service’s
or application’s current state while the later utilise the information to decide an action.
However, such approach lacks to capture the necessary levels of knowledge and thus the
system can be limited in its adaptation behaviours. To overcome such issue, we propose
an autoscaling architecture that offers a unified solution to handle runtime dynamics,
uncertainty and trade-offs related to different QoS and cost objectives. As the component
diagram depicted in Figure the main logical aspects in autoscaling are explicitly

modularised into five components, which are described below:

e Sensor: The Sensor collects raw data from the underlying service-instances, plat-

form and infrastructure through the corresponding interfaces or logs as offered by
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the cloud provider. This data includes the currently achieved QoS, environmental
primitives, software and hardware control primitives, as well as the agreed con-
straints in SLA and budgets. In particular, the sensors should sense the data for

those service-instances that are likely to have objective-dependency.

QoS Modeller: All historical data from data sensors is analysed in this component
using information theory and machine learning algorithms. Its goal is to model
the correlation between QoS and the underlying cloud primitives. For each QoS
attribute of a service-instance, the QoS Modeller filters unnecessary inputs for the
QoS and dynamically update their magnitude in the correlation; it is also QoS
interference aware by including the primitives of co-located services and co-hosted
VMs into the model. Notably, the QoS Modeller runs periodically for collecting data
and modelling the QoS, which means it is capable for dynamically and continually
improving the models for handling runtime uncertainty. The resulted models are
particularly useful for reasoning about the effects of autoscaling decisions and their
possible trade-offs. Details of the proposed QoS modelling approach are explained
in Chapter [4) and 5]

Region Controller: This is the component that rarely exist in current work, as we
have surveyed in chapter 2] Such intermediate component between QoS Modeller
and Decision Maker explores full information about QoS sensitivity expressed in the
QoS models, and thus enable better global results with reduced overhead. Specifi-
cally in Region Controller, the most up-to-date QoS models and the cost models are
dynamically clustered into regions, in each of which the objectives are dependent
(i.e., harmonic or conflicted). This is achieved by examining whether the models
have the common inputs that are parts of the autoscaling decision. If these common

inputs exist, it means that the objectives are dependent and can be affected differ-
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ently by the same decision; hence, they need to be considered in conjunction with
each other in the decisions making process. On the other hand, the objectives, which
are independent, are omitted from the same decision making process as they can
benefit nothing but generate overhead. The Region Controller can help to dynami-
cally determine the right granularity of control and thus, the autoscaling system can
better globally optimise all cloud-based service while resulted in reduced overhead.

Details of the proposed region clustering approach are specified in Chapter [6]

Decision Maker: Given the QoS models and the regions, the Decision Maker
component is responsible to search for an autoscaling decision that optimises the
QoS and cost objectives of the cloud-based services. By leveraging on search-based
optimisation, the decision making process can perform exploring and reasoning in a
finite, but possibly very large search space; while still produces the optimal (or near-
optimal) decision. Such process can also adaptively handle trade-offs on objectives,
even in the absence of preference. Details of the search-based decision making

process are specified in Chapter [7}

Actuator: Once the final autoscaling decision has been produced, we consider
both vertical scaling and horizontal scaling in the Actuator component. In our sys-
tem, vertical scaling always takes higher priority, providing that modern hypervisors
(e.g., Xen [0]) can achieve dynamic vertical scaling with negligible overheads. The
resources on a PM are provisioned to the VMs in a first-come-first-serve basis. The
horizontal scaling, on the other hand, is only triggered when the resources of the PM
tends to be exhausted, i.e., when the total upper bounds of all co-hosted VMs for a
resource type exceeds the PM’s capacity, the last service-instance that requires to
increase the upper bound would be migrated /replicated. Likewise, a VM is removed

when its provisions and utilisations for all resource types are below thresholds.
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This architecture summarises the key components and features for autoscaling system.
To better describe the marriage between self-awareness and autoscaling, we have proposed
a set of self-aware patterns, which serve as a general guideline for architecting self-aware

systems.

3.3 Self-Aware Patterns

When faced with the task of designing self-aware computing system, researchers and
practitioners need a set of guidelines on how to use the concepts and principle of self-
awareness [18]. To this end, we have documented different categories of self-awareness
capabilities using 8 architectural patterns, which serve as the guidelines on how to design
self-aware computing systems in a principled way. The aim of those patterns is to ensure
that, when designing self-aware systems, only relevant types of knowledge are included,
and their inclusion justified by identified benefits. To better illustrate the self-aware
pattern and its origin, we briefly specify one exampled pattern in the following:

The pattern shown in Figure is suitable for situations where goals, time and
interactions between machines and processes need to be captured. Here, goal awareness
enables the representation of changing runtime goals, so a node can share its knowledge
with other goal-aware nodes and the system can adapt to the changed goals. Time
awareness allows the representation of temporal knowledge about goal and interaction
awareness, enabling capabilities such as forecasting. This pattern also adds meta-self-
awareness, enabling the system to manage the trade-offs associated with exercising various
self-awareness levels and thereby allowing it to modify goals at runtime. An example of
this runtime meta-reasoning is the dynamic selection of the most appropriate learning
algorithm for a particular context.

Please refer to Appendix [A| and our handbook [39] for more detailed specifications of

the patterns.
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Md_Op . | Mul_Op

.

— Physical connector (data)
—» Physical connector (control)
» Physical connector
(control or data for different
awareness levels)
-~ Logical connector

Figure 3.2: The Goal Sharing with Time-Awareness Capability Pattern. There are three
types of multiplicity operators (Mul_Op): * expresses that the number of capability of
the same type in the interaction is restricted to at least one. 1 indicates that one and
only one capability of the same type is permitted. + indicates that zero, one or many of
the type specified is permitted in the interaction.

3.4 Mapping Between Self-Aware Pattern and Au-

toscaling Architecture

To apply self-awareness at the architecture level, it is essential to systematically map a
selected self-aware pattern to the architecture components of the given problem domain,
which in this thesis is autoscaling in the cloud.

Recall that in general term, the ’self’ (or node) can be any conceptual part of the
system being considered, e.g., process, component or machine. The cloud autoscaling
system is typically composed of numeric physical machines, each of which running services
benefiting from virtualization. In this context, ’self’ is simply the autoscaling process on a
physical machine. Self-awareness for an autoscaling process is to aware of the knowledge
about its own (or the others’) possible impacts on the QoS models of the managed services,
the granularity of control and the quality of trade-offs decision for a given runtime scenario.

Based on the knowledge acquired via self-awareness, we promote bidirectional adaptations
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: Stimulus
Region Awareness
Controller
Time
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Meta-self-
Decision Awareness
Maker Self-
expression

Figure 3.3: The Mapping Between Autoscaling Components and The Self-awareness Ca-
pabilities.

in an autoscaling process. In one direction, adaptation can be concerned with adapting the
configurations for its services and virtual machines. On the other direction, adaptation
can consolidate its own autoscaling capabilities. This is concerned with building more
accurate QoS models, identifying better granularity of control and making better trade-
offs decisions. The bidirectional adaptations, through the principles of self-awareness, aim
at improving the effectiveness and self-adaptivity of autoscaling.

With that context in mind, the autoscaling architecture proposed in Section [3.2] is
then systemically mapped to the self-awareness capabilities (Figure and to a concrete
instance of a carefully selected self-aware pattern (Figure left). To select the self-
aware pattern, we have followed the systematic mapping guideline, which is a result of
our Work Package from the EPiCS project [18]. This systematic mapping guideline, which
by itself is standalone contribution, has been thoroughly documented in our handbook
[39]; and it has been reviewed and evaluated by different partners of the EPiCS project

[18]. Additionally, the application of such mapping guideline in the context of cloud
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Figure 3.4: Enriching the Self-aware Autoscaling Architecture.

autoscaling has been illustrated as a case study in the handbook.

As we can see from Figure the mapping process has identified Goal Sharing with
Time-Awareness Capability Pattern as a suitable pattern for addressing the challenges
of autoscaling. The arrows in Figure [3.4] represent either data or control flow . As we
can see from the left figure, different levels of awareness require control or data flow
to achieve collaborations. This has provided guidance on how to correctly incorporate
self-awareness with autoscaling architecture. The autoscaling architecture is then enriched
with self-awareness capabilities, shown as the deployment diagram in Figure [3.4] right.
Given that it can be hard to directly achieve self-awareness for a complex autoscaling

process, we have modularised the self-awareness capabilities into different internal selves
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as encapsulated by three components. Consider the autoscaling system of the cloud, which
is composed of self-aware autoscaling processes on different physical machines. Here,
each autoscaling process would have different internal selves: these are the processes in
QoS Modeller, the Region Controller and the Decision Maker component; in this way,
we hope to make these processes more intelligent using self-awareness. The autoscaling
system is realised as a decentralised instances, where an instance coordinates the selves to
realise self-awareness in autoscaling. The components in our autoscaling system, except
QoS Modeller, are triggered when the system detects violations of the requirements; i.e.,
violations of SLA and utilisation constraints in case of over-provision. In particular, a
requirement is said to be violated only if such violation has been observed for more than
n sampling intervals, where n is a variable that controls the trade-offs between stability
and adaptivity of our system. The sensors on a PM does not only sense data, but also the
QoS models from other PMs. This is because a cloud-based service can, in some cases, be
functionally dependent on services running on the other PMs, thus creating the chances
for objective-dependency.

In the following sections, we further discuss how the self-awareness capabilities, which

have been explained in Chapter [2] are mapped in the context of different internal selves.

3.4.1 Mapping Self-Awareness in QoS Modeller

The QoS modelling approach is enriched by self-awareness. At this level, 'self’ refers to
the QoS modelling process in autoscaling. Self-awareness is concerned with knowing how

the QoS modelling can be affected by:
e Features (e.g. workload) of QoS attributes and their changes - Stimulus-awareness.
e Possible QoS interference and contention - Interaction-awareness.

e Historical modelling errors and data trends - Time-awareness.
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e Changes in utility functions of QoS - Goal-awareness.
e Suitability of learning algorithms - Meta-self-awareness.

These levels of knowledge promotes the awareness of QoS sensitivity, i.e., with respect to
which, when and how cloud primitives correlate with the QoS. As the knowledge changes,
the QoS modelling process can benefit from self-awareness to dynamically self-adapt the
selected features and expressions of its QoS models at runtime.

By leveraging on the advances of machine learning algorithms, self-awareness not only
able to better handle dynamics and uncertainty, but also eliminates the need for heavy
human analysis and prior design time knowledge in the QoS modelling. However, because
there is no single learning algorithm which can outperform the others constantly across
a range of scenarios, selecting the right algorithm is a challenging task for developers.
Self-awareness can even address this issue by using the notion of meta-self-awareness,
which performs reasoning at the meta-level, i.e., the modelling process is aware of what is
the best algorithm to enable other self-awareness capabilities. In such way, self-awareness

help to achieve more accurate and more effective QoS modelling.

3.4.2 Mapping Self-Awareness in Region Controller

To improve the global benefit with respect to QoS and cost objectives of all cloud-based
services, we dynamically identify the right granularity of control building on self-awareness
capabilities [I8]. By leveraging on the QoS and cost models, self-awareness helps to
adaptively cluster objectives into different regions according to objective dependency ,i.e.,
we put objectives in one region as long as they have common cloud primitives, which are
parts of the final autoscaling decision, in their models. The regions can be different in
size and this promotes dynamic granularity of control. We then consider the objectives
from each regions in separated decision making processes. A self-aware and self-adaptive

process is realised in the Region Controller, which maintains different regions. At this
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level, 'self’ refers to the region controlling process in the autoscaling. Self-awareness here

is concerned with knowing how such process can be affected by:
e QoS and cost models - Goal-awareness.
e objective dependency, i.e., conflicted or harmonic goals - Interaction-awareness.

These levels of knowledge promotes the awareness of the effects of control granularity on
the global benefit. Henceforth, the region controlling process can better self-adapt its
regions and their content to the dynamic changes in knowledge. As such, self-awareness

improves global benefits while reducing overhead.

3.4.3 Mapping Self-Awareness in Decision Maker

Once the QoS models and regions are defined, we are faced with trade-offs when au-
toscaling in the cloud. In the Decision Maker, we take a multi-objective representation to
model the trade-offs of QoS and cost objectives for different cloud-based services, and the
problem is resolved by a self-aware and self-adaptive process. At this level, ’self’ refers
to the decision making process in the autoscaling. Self-awareness here is concerned with

knowing how the decision making can be affected by :
e QoS and cost models, as well as their requirements - (Goal-awareness.

e regions of objectives, which represent the positive, negative or zero interaction be-

tween objectives during decision making - Interaction-awareness.

Obtaining these levels of knowledge mean that the decision making process is capable to
self-adapts its behaviour in the search for better trade-offs decisions. Specifically, self-
awareness assists the decision making process in extensively reasoning about the effects
of autoscaling decisions on goals and the possible trade-offs. By leveraging on modern

search based algorithms, the reasoning serves as a strong assurance about the quality of

86



autoscaling, especially when the search space is incredibly large (i.e., too many combi-
nations of software configurations and hardware resource provisions), which cannot be
handled by human decision maker. More importantly, the knowledge acquired from self-
awareness helps the process to self-adapt its own search behaviour for better optimality
and diversity, e.g., exploring more on the decisions that contain high CPU allocations
and more beneficial for certain goals. This permits the Decision Maker to handle com-
plex trade-offs even without prior preferences, i.e., achieving well-compromised trade-offs,
which largely improving majority of the goals while causing relatively small degradations
on others. Given that the regions are dependent to each others, we only make decisions
for the regions containing the objectives whose requirement violations have been detected.

process is needed.

3.5 Conclusion

As cloud computing continuous to evolve, autoscaling requires novel principles and ap-
proaches to seamlessly manage the underlying cloud-based services. Self-awareness pro-
vides highly promising avenue for improving self-adaptivity and the effectiveness of au-
toscaling in the cloud. In this chapter, we describe the autoscaling architecture and its
mapping to self-awareness capabilities and the related pattern. We focus on discussing
how the principle of self-awareness can be beneficial for various logical aspects in autoscal-
ing, including QoS modelling, identifying granularity of control and making trade-offs
decisions. In Chapter [ [5], [6] and [7] we will experimentally evaluate each of these logical
aspects in details.

In the next chapter, we will explore the first internal self, namely QoS Modeller, in
the self-aware autoscaling architecture. Specifically, in such internal self, we propose a
self-aware and self-adaptive QoS modelling approach, which is capable to dynamically

correlate QoS attributes to various cloud primitives on-the-fly.
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CHAPTER 4
SELF-AWARE AND SELF-ADAPTIVE QOS

MODELLING IN CLOUD AUTOSCALING

4.1 Introduction

The elasticity of cloud has caused a paradigm shift in the way we manage and continually
evolve cloud-based software services. However, it would be difficult for software engineers
and cloud engineers to predict the wide variation of behaviours that software services
can experience when running on a shared and on-demand environment such as the cloud.
It is particularly hard to anticipate the dynamic changes in workload and the runtime
demands of these cloud-based software services. This fact implies that it becomes more
complex to assure the Quality of Service (QoS) when engineering cloud- bases services.
The design of offline and manual management strategies for QoS are mere difficult if not
impossible exercise to achieve.

With such context in mind, the key problem, which cloud/service providers face is
how to manage runtime QoS by autoscaling to the best set of control values on-the-fly. In
particular, the fundamental challenge is how to dynamically link QoS with the primitives

in cloud, which we address in this Chapter. QoS models allow the use of primitive values as
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inputs and predict the likely QoS value as outputs. An accurate QoS model in the cloud
can serve as a powerful tool that assists software/cloud engineers or other automated
agents to profile service characteristics (e.g., CPU intensive services); to diagnose the
cause of violation on QoS requirements; and more importantly, to compare and reason
about different elastic autoscaling decisions in the cloud.

As we have extensively surveyed in Chapter [2 the majority of the existing approaches
for QoS modelling in cloud has been either static (i.e., analytical [77] and simulation based
[55]) or semi-dynamic [90]. The former is being static in the sense that the expression of
models are fixed, and therefore, they are insensitive to the QoS fluctuations at runtime;
this is due to the entire modelling process has relied on manual and offline analysis. On
the other hand, the semi-dynamic approaches focus on adaptive and dynamic modelling
of the magnitude of primitives in correlation to QoS, which means the model changes
with respect to the QoS fluctuations. However, their selection of primitives to determine
the feature inputs of models has been manual and offline, resulting fixed inputs for the

models. As a result, they suffer limited self-adaptivity.

4.1.1 Motivations and Challenges

In this section, we motivate the proposed approach by identifying several important chal-
lenges for QoS modelling in the cloud, which have not been or have only been partially
considered in previous work.

Fine-grained QoS Modelling: There can be different cloud-based software ser-
vices running on a VM, each with its own QoS requirements. Fine-grained QoS mod-
elling is challenging as more heterogeneity (e.g., QoS requirements, their derivatives and
service characteristics etc.) need to be considered. However, existing static and semi-
dynamic modelling tend to focus on the mean and aggregate QoS of the entire VM. Such

coarse-grained analysis suffers from limited sensitivity; it does not apportion sensitivity to
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changes in QoS of each individual services and the primitives. As a result, the modelling
of QoS tend to be inaccurate and limited for individual software service; more accurate
and effective modelling needs to be approached from a fine-grained perspective.

Dynamic and Uncertain QoS Interference: QoS modelling in the cloud suf-
fers from the problem of QoS interference. QoS interference refers to scenarios where
a software service exhibits wide disparity in its QoS performance that depends on the
dynamic behaviours of its neighbours. In particular, we distinguish two major causes of
interference, these are: co-located service interference and co-hosted VM interference. In
this chapter, we particularly focus on the QoS interference caused by co-located services
on a VM; we leave the problem of co-hosted VM interference to the next chapter. Given
that the QoS interference tends to be dynamic and uncertain in nature, the challenge lies
in the difficulty to dynamically incorporate the information about the related interference
in the modelling. Despite the fact that QoS interference is important for QoS modelling
in the cloud, there are not many work that target for this challenge. In addition, existing
work consider co-hosted VM interference only (e.g., [116]). As a result, such absence
of QoS interference in the model can downgrade the accuracy and/or lead to incorrect
autoscaling decision.

Dynamic and Uncertain QoS Sensitivity: The core of QoS modelling is how to
model its sensitivity with respect to the primitives in cloud. By QoS sensitivity, we are
interested in which (e.g., are CPU and throughput correlated?), when (i.e., at which point
in time they are correlated?) and how (i.e., the magnitude of primitives in correlation) the
primitives correlate with QoS. Given the dynamic and on-demand nature of cloud, QoS
sensitivity is dynamic and uncertain, i.e., runtime changes occur in terms of which, when
and how primitives correlate with QoS. Specifically, the challenges of QoS sensitivity in
the modelling can be attributed to two important phases, namely primitives selection and

QoS function training;:
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Figure 4.1: The Exampled Correlation Between Response Time and CPU.

Primitives Selection: To model QoS and its sensitivity in the cloud, a fundamental
task is to adaptively determine what are the primitives that should be used as feature
inputs of the model (i.e., which and when the primitives correlate with QoS). To
show a simple example of the dynamics and uncertainties in primitives selection, in
Figure , we vary the workload of a service while keeping that of the co-located
services and co-hosted VMs unchanged, we can see that the Response Time of the
said service tends to be insensitive to CPU at the beginning hence it cannot provide
relevant information about the QoS. However, after the 18th interval, the Response
Time gradually become more affected by the CPU as the workload change by time,
which is uncertain in nature; this becoming even more true in the cloud when
there is uncertain QoS interference, i.e., the workload of neighbour services/VMs
changes. Therefore, the primitives selection needs to cope with the dynamics and

uncertainties in QoS sensitivity. Given that the selected inputs have a great impact

I'The data is obtained based on our experiments in Section
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to the model accuracy (as we will show in Section , it is important to select
a relevant set of primitives. However, this is a challenge providing the uncertainty
of the relevance between QoS and cloud primitives, it is even harder when we take
QoS interference into account. Nevertheless, majority of the existing static and
semi-dynamic approaches for QoS modelling in the cloud rely on fixed and manual
analysis to select the primitives as inputs, which are often offline. In addition, prior
work only consider hardware resource while ignoring the software configurations,
which can interplay with the hardware provision to influence QoS; these are often

the primary causes of QoS violations [26] [I39] [99].

QoS Function Training: Another important task in modelling QoS and its sensi-
tivity is to adaptively determine how the primitives correlate with QoS by means
of mathematical function. To show a simple example of the dynamics and uncer-
tainties in QoS function training, we use the aforementioned setup in Figure [4.1]
As we can see, from the 18th interval onwards, the Response Time of the service
is becoming more sensitive to CPU till 30th where the sensitivity is starting to
decrease. This shows that the Response Time is always sensitive to CPU for the
period, but the magnitude tends to be different depends on the uncertain changes
of workload from time to time. Again, this becomes more complex in the cloud
when it involves changing workloads of neighbour services/VMs. All These facts
imply that the modelling needs to be able to handle the dynamic and uncertain
magnitude of primitives in the correlation, which is a challenge. Consequently, the
static QoS modelling approaches tends to be insufficient, because the effectiveness
of these approaches is restricted by their simplified and fixed assumptions on the
environment and service’s internal operations [90], which limits them for handling
the dynamics and uncertainties of QoS sensitivity in cloud. On the other hand, the

semi-dynamic approaches are capable to handle this challenge as they are grounded
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on sound machine learning algorithms, which tend to be dynamic and self-adaptive
in nature. In addition, they rely on no or limited assumptions. Particularly, the
online version (e.g., [87]) has been proposed to overcome the inadequacy of the of-
fline version (e.g., [90]) in dealing with the uncertain changes of QoS sensitivity at
runtime. However, selecting and efficiently adopting these learning algorithms for
QoS modelling in the cloud is a challenge. Each learning algorithm has both advan-
tages and disadvantages, e.g., a complex and nonlinear algorithm may be suitable
for handling complex correlation, but the training overhead may be high. On the
other hand, a linear algorithm can be efficient, while it may lack in dealing with
frequent fluctuation. Given the dynamic and uncertain correlation between QoS
and the cloud primitives, it is remain unclear about which are the suitable class of

learning algorithms for QoS modelling in the cloud.

All these challenges and limitations of existing work call for novel and fully-dynamic

QoS modelling approach in the cloud, with limited or no human intervention.

4.1.2 Contributions

In this chapter, we propose a self-aware and self-adaptive QoS modelling approach for
each individual cloud-based service. It grounds on sound information theory and ma-
chine learning algorithms, which are the key enablers of realising self-awareness for QoS
modelling in the cloud. Our approach is fully-dynamic and it is capable to adaptively
capture the dynamics of QoS sensitivity by determining which, when and how primitives
correlate with QoS at runtime. In particular, we have relied on symmetric uncertainty
[130] from information theory to quantify the relevance between two random variables.
This is motivated by the fact that it is an highly intuitive and efficient metric supported
by strong theoritical foundations. Subsequently, we combine symmetric uncertainty with

two learning algorithms: Auto-Regressive Moving Average with eXogenous inputs model
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(ARMAX) [22] and Artificial Neural Network (ANN) [I19] to reach two formulations of
the model. The choice of ARMAX and ANN is driven by the fact that they are the most
commonly applied algorithm for QoS modeling in the cloud, and that they represent two
extreme groups of algorithms in machine learning: ARMAX is essentially linear regres-
sion, which is simple and fast; while ANN is capable to handle nonlinear correlation but
could lead to high complexity. Experiment results show that our models produce bet-
ter accuracy when compared with conventional ones. In comparison of the two resulting
models, our Sensitivity-aware ANN (S-ANN) can better handle dynamic QoS sensitivity
and produce higher accuracy when the fluctuation of measured QoS increases, whereas
our Sensitivity-aware ARMAX (S-ARMAX) produces less error when such fluctuation

decreases.

4.2 Problem Analysis and Models

In this section, we present our assumptions, the system model and the abstract QoS
model that drive our design. These assumptions and models will be used in the following

chapters of this thesis.

4.2.1 Cloud System Model

As mentioned in Chapter [I| we assume that cloud-based applications are composed of
services, each has different QoS requirements and external environment changes (e.g.,
changes in workload). Particularly, we term a replica of a service as service-instance:
the jth instance of the ith cloud-based service is denoted as S;;. Unlike most of the
existing work, which focus on modelling for the entire application and VM, we aim to
create fine-grained QoS models for each service-instance.

It is worth noting that, apart from the co-located services on a VM, QoS interference

can also occur due to contention on the functionally dependent services. For instance, Sty
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and S3; (both running on different PMs) can be both dependent on Sy (e.g., a database
service). This implies that Sj; and S3; incur QoS interference. However, we discovered
that in such case, the primitives of S3; tend to be insignificant in the QoS modelling of
S11 as the same information has already been expressed by the primitives of Sy1, which is
also part of the invocation. As a result, we consider the co-hosted services as the primary

causes of QoS interference.

4.2.2 The Cloud Primitives for Building Models

As mentioned in Chapter [2] the primitives in cloud serve as the fundamental inputs of a
QoS model. Without loss of generality, we decompose the notion of primitives into two
major domains: these are Control Primitive (CP) and Environmental Primitive
(EP). Selecting the relevant primitives for QoS is an crucial step in QoS modelling.
Specifically, all possible primitives inputs for modelling the QoS attributes of a service-

instance form a space, which we call possible relevant primitives space. This space

can be defined by:

Rule 4.1. A primitive belongs to the possible relevant primitives space for modelling the

QoS of Sy if it can be classified into one of the following groups:

1. It is a software control or environmental primitive of Sqp.
2. It is a hardware control primitive of the VM that runs Sup.

3. In case of Sq has direct functional dependencif] on Seq, it is a software control or

environmental primitive of Seq.

4. In case of Sq has direct functional dependency on S.q, it is a hardware control

primitive of the VM that runs Seq.

2When the completion of a service S, requires the invocation of another service S.q, then it is said
Sap has functional dependency on S.4. If no intermediate services are required in the invocation between
Sap and S¢4, then it is said S,p has direct functional dependency on S.q4.
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5. It is a software control or environmental primitive of S.q, which is co-located with

Sy on the same VM.

In Section [4.3.1] we will present the solution for selecting the relevant primitives from
such possible relevant primitives space.

Another important decision to mention is that, for each control primitive, we need to
decide on whether the upper/lower bound of control primitive. However, it is generally
impossible to guarantee that the configured value (e.g., CPU cap) can be fully utilised.
Such fact obfuscates the sensitivity of QoS to its primitives as using the configuration
values to model QoS would take those idle proportions of provisions into account. As
a result, using configuration values as inputs is ill-suited in our case. To cope with this
issue, we apply the demand values of control primitives (e.g., real-time percentage usage
of CPU) as inputs, which better reveal QoS sensitivity. Moreover, modelling QoS with
demand values implies that our model is likely to determine the minimal requirement
of configurations for achieving certain QoS objectives. This will potentially improve the
elasticity of software configuration and hardware provision in cloud, when our modelling
approach is used in cloud management. It is worth noting that certain dimensions of
control primitives (e.g., thread) can be controlled for each service-instance individually,
whereas others (e.g., CPU and memory) are shared on a VM, in which case an identical
value would be used for modelling the QoS of all service-instances deployed on such VM.

Instead of using multiple metrics for each primitive and QoS, e.g., CPU percentage
and instructions-per-second for measuring CPU of a VM, we follow the state-of-the-art
assumption [90] that only one metric is used for each primitive and QoS in the modelling;
the proper metric can be chosen by the software/cloud engineers based on certain con-
straints in the cloud environment (e.g., whether it is supported by the hypervisor). We

leave the study of multidimensional metrics as future work.
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4.2.3 Generic QoS Model

To tackle the aforementioned challenges of QoS modelling in the cloud, we define a generic

QoS model. Formally, the model at the tth sampling interval is expressed as:

QoS{ (1) = £/ (SP(1),0) (4.1)

where QoS Z(t) is the kth QoS attribute of Sj;, and its value that used in the modelling
is represented by a given metric (e.g., mean Response Time) at t. f,fj is the QoS function
for the kth QoS attribute of Sj;, and it changes at runtime using learning algorithms,
as we will see in Section .  refers to any other inputs (e.g., historical time-series
QoS points and tuning variables etc) required by the algorithm to train f,fj apart from
the cloud primitives. We denote the input in as the selected primitives matrix of

Q0S¥ (t) at t, formally depicted in (4.2)):

CP™(t) . EPI™M(t—1)
SPY(t) = : : (4.2)

CPY(t—q+1) - EPY"(t—q)

This matrix contains the primitive inputs of QoS g(t) which are dynamically selected
from the possible relevant primitives space for the QoS attributes of S;;, as we will see
in Section More concretely, the column entries indicate the selected primitives
for the QoS. CPr¥(t) denotes the ath control primitive of S,, and EP™(t — 1) means
the bth environmental primitive of S,,, respectively. The actual values of C'P?¥(t) and
EP™(t — 1) in the modelling are measured by given metrics (e.g., expected CPU %
usage and mean request rate) at t and ¢-1, respectively. ¢ determines the number of
row entries, which indicates the use of how many historical time-series points of the

selected primitives as inputs. During our experiments in Section [£.4] we observed that
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the best value of ¢ depends on the learning algorithm that trains f; in particular, it is
better to set ¢ as constant for certain algorithms (e.g., g=1 for ANN); however for the
others (e.g., ARMAX), we found that ¢ should be determined during training via hill-
climbing optimisation, which starts with ¢g=1, then automatically increase the number of
row entries one by one during training till the accuracy cannot be further improved. To
improve numeric stability, we normalised all data values to the range between 0 and 1
before they are used in the modelling.

It is easy to see that and provide generic and intuitive formulations for
modelling QoS in the cloud. Precisely, to model QoS Z](t) , the objective of our self-aware
and self-adaptive modelling approach consists of two-phases: (i) a primitives selection
phase that determines the content of SP¥(t) at runtime; and (ii) a QoS function training

phase that trains function f,fj on-the-fly.

4.3 Designing Self-Aware QoS Modelling

To adaptively build fine-grained, self-aware and self-adaptive QoS models, we imple-
mented our modelling approach as decentralised and independent components. As shown
in Figure [4.2] the QoS modelling process is realised as decentralised feedback loops; in
particular, a dedicated component instance (CI) is attached to each VM, and it could be
deployed on the root domain of a PM (e.g., Dom0 of the hypervisor Xen [6]).

The QoS modelling component encapsulates three sub-components: Data Collector,
Primitives Selector and QoS Function Trainer. As we can see in Figure [4.2] the approach
is deployed using decentralised component instances, each of which is attached to a VM.
The supported QoS attributes and primitive types are provided by the cloud adminis-
trators. By leveraging on the cloud providers’ own measurement facilities provided at
SaaS, PaaS and laaS layers, an instance of the component monitors the data of each

service-instance running on the VM; it also adaptively producing QoS models based on

98



Initial Conﬁguratmns@ Used for prediction

;. EEYTTTTLLLLY .I;.l:i;;;i.t.i.;;e..s. .S"él-é‘c.t.i.(.)-;l ........................ 6.(.).é. 'l';-'l'l'l'l'c'ii;;;; .ri:l:-a‘i.l.l.i.l.l-é. nn Mi.‘.l.t..l.).é.’.’;b. When needed

Primitives Selector

QoS Function i : oo
Trainer . MI MI‘

Sensed
A Data

Sensed — >
Data
) ()

Figure 4.2: The Architecture for QoS Modelling in the Cloud.

this data. More precisely, the Data Collector continually senses QoS values, environmen-
tal primitives’ values and demand of control primitives from all service- instances on its
corresponding VM. It is also responsible for recording all historical data (step 1). The
data collectors may need to collect data from the external service-instances, which could
be on other VM /PM. This is because these external service-instances may be functionally
required by the service-instances running on the VM attached to data collectors. All
historical data is then passed to our Primitives Selector to determine which and when
primitives are correlated with a QoS (step 2). Once the relevant primitives are selected
for each QoS, the QoS Function Trainer can apply the data set to dynamically train how
these primitives correlate with QoS and produce the final QoS models, based on machine
learning algorithms (step 3). To capture dynamic sensitivity of QoS, the entire process
should be repeated periodically (step 1-4).

For our autoscaling framework, this is the QoS Modeller component as described in

Chapter [3| Being one of the three internal selves (i.e., QoS Modeller, Region Controller
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Table 4.1: The Mapping Between Self-Awareness Capabilities and the Sub-Components

for QoS Modelling in the Cloud.

Self-
Awareness
Capability

Component

Description

Stimulus- Primitives Knowing how the QoS modeling process can be af-
awareness Selector  and | fected by the features (e.g. workload) of QoS at-
QoS Function | tributes and their changes.
Trainer
Interaction- | Primitives Se- | Knowing how the QoS modelling process can be af-
awareness lector fected by the possible QoS interference and resources
contention.
Time- Primitives Knowing how the QoS modelling process can be af-
awareness Selector  and | fected by the historical data points and the overall
QoS  Function | trends.
Trainer
Goal- QoS Function | Knowing how the QoS modelling process can be af-
awareness Trainer fected by the utility functions of QoS.
Self- Primitives Self-adapting the expressions of its QoS models, in-
expression Selector  and | cluding the model inputs and function.
QoS Function
Trainer

and Decision Maker), self-awareness in QoS Modeller is mainly concerned with know-
ing QoS sensitivity. Table shows the mapping between the sub-components of QoS
Modeller and the self-awareness capabilities. In the following sections, we explain the

algorithms and techniques used to achieve self-awareness at the QoS modelling level.

4.3.1 Relevance Driven Selection of Cloud Primitives

As shown in and , the first task for modelling QoS,ij(t) is to explore which
primitives should be included as column entries in SP?(t), and determine when is the
appropriate interval to consider these primitives. To quantify the relevance of a primitive
to the QoS, we have used Symmetric Uncertainty (SU), which is a fundamental concept

in information theory [130]. SU measures the degree of relevance between two time series
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variables by producing a value ranges from 0 to 1, where a greater value implies higher
relevance. At one extreme, the value between a QoS attribute and a primitive is 1 indi-
cating that all information of the primitive is correlated with the QoS (and vice versa).
At the other extreme, the value of 0 implies that changes in the primitive’s behaviour
are independent of that of the QoS (i.e., irrelevant primitive). Formally, the symmetric

uncertainty for discrete variables is calculated by:

2 x I(X,Y)

UX,Y) = H(X)+ H(Y)

16,Y) = 33 pla,y) log(— 229 (4.4)

S5 p(x) x p(y)
H(X) == p(x)log(p(x)) (4.5)
zeX

where X and Y are two value vectors of time-series variables (e.g, a QoS attribute and
a primitive); x and y are one of these values. I(X, Y) shows the formula for mutual
information and H(X) expresses entropy (we have used 2 as the log base); p(z,y) is the
joint probability between two values and p(z) is the marginal probability of a value. In
the following, we call a primitive as relevant primitive to a QoS attribute if it results in
non-zero SU value to such QoS. It is worth noting that at this stage, we do not consider
the redundancy in the selected relevance primitives. This issues will be tackled specifically
in the next Chapter.

In the Primitives Selector component, we adopt the relevance driven technique to
determine the relevant primitives of a QoS attribute, the procedure is described as the
following: firstly, based on the sensed data, we calculate the symmetric uncertainty be-
tween the QoS attributes of a given service-instance and each of the primitives from the
corresponding possible relevant primitives space (as described in Rule . Secondly, we

update the corresponding selected primitives matrix by adding the primitives that result
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in nonzero SU value; while removing primitives that have zero value. To handle runtime
dynamics and uncertainty, the selected primitives matrix can be continually updated with

newly-measured data.

4.3.2 Sensitivity-aware Auto-Regressive Moving Average with
eXogenous inputs model

Recall from , once the SPY(t) is defined by the primitives selector, our next goal of
QoS modelling is to determine how those primitives correlate with QoS ’,j(t) by dynami-
cally building the function f,fj . To achieve such goal, we apply two alternative algorithms
in QoS function trainer. We have chosen the ARMAX [22] and the ANN [I19] as repre-
sentative of the linear and nonlinear algorithms respectively. Given that they only model
the primitives that selected using our relevance driven technique, the final models are
termed Sensitivity-aware ARMAX (S-ARMAX) and Sensitivity-aware ANN (S-ANN) re-
spectively. The choice of ARMAX and ANN is driven by the fact that they are the most
commonly applied algorithm for QoS modeling in the cloud, and that they represent two
extreme groups of algorithms in machine learning: ARMAX is essentially linear regres-
sion, which is simple and fast; while ANN is capable to handle nonlinear correlation but
could lead to high complexity.

We have considered linear ARMAX [22] as one of the applied learning algorithm for
QoS function training. The resulted model of particularly fits our case because it is based
on continuous time series. The correlation between primitives and QoSs in our case is
unlikely to be linear, however, the behaviour of a service instance can be approximated
locally as a linear model [107]. We adopt ARMAX such that the output is the QoS;
inputs are historical QoS values and relevant primitives of the said QoS. Formally, based

on the generic QoS model and symmetric uncertainty, our Sensitivity-aware ARMAX
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(S-ARMAX) is defined as:

QoS{(t) =) a.(t) x QoSY(t—2)+ > Y Bualt) x CPP(t+1— 2)
z=1 z=1 a=1 (46)

subject to CP™(t +1— z), EPJ"(t — 2) € SPY (t) (4.7)

where ¢ is the number of order, o, (t), 8.,(t) and 0., (t) are the coefficients of corresponding
QoS values and relevant primitives at sampling interval ¢. The constraint ensures that
any primitives should be selected from SP(t).

We train the SSARMAX model using linear Least Mean Square (LMS) approach [129],
and the number of order ¢ is determined using hill-climbing algorithm that starts with
g=1, then automatically increase the number of row entries one by one during training

till it reaches good accuracy.

4.3.3 Sensitivity-Aware Artificial Neural Network

Artificial Neural Network (ANN) [I19] is applied as the second algorithm to build our
function f,fj . We chose ANN because it is capable for modelling complex nonlinear corre-
lations. In particular, we adopt ANN with one hidden layer. This is because we observed
in our experiments that using two or more hidden layers could exacerbate the problem of
local minima, which significantly increases the training time. More precisely, the ANN,
which we adopt is a single-output, feedforward and fully connected three layered network,
where the inputs are the relevant primitives determined by primitive selector and output
is the corresponding QoS. Sigmoid function is chosen as the activation function on each

neurone node. We found that the number of order ¢ does not influence ANN’s accuracy
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significantly, therefore we simply set ¢ as 1 (i.e., no time-series information is included).
Based on the generic QoS model and symmetric uncertainty, our Sensitivity-aware ANN

(S-ANN) model is expressed as:

Input Hidden Ouput

layer layer layer

CPi'(t)

EP™(t-1)

subject to CP™(t), EP™(t — 1) € SP](t) (4.8)

The constraint again ensures that any primitives should be selected from S P,ij (t). ANN
model can be trained with arbitrary quality, which reveals the potential accuracy of the
model prediction. By model quality, we refer to the degree to which the model is fit with
respect to the training data. In this perspective, a good quality model means that the
fitness should not be too low or too high; otherwise, the model will suffer from under- and
over-fitting. To guarantee model quality, we define minimum and maximum thresholds
to represent the good enough quality of model. The resulting model should be re-trained
immediately if its quality is not good enough.

Similar to S-FARMAX, by the end of each interval, the weights in S-ANN can be
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retrained with the newly-measured and normalized data. To achieve this goal, we apply
the RPROP [115] as the actual training algorithm for the network. This is because
RPROP can efficiently reach 'good enough’ model quality. To avoid training forever, we
have defined a training time threshold such that if this threshold has been reached, the
training is concluded with the best ever model. We found that use ¢=1 (i.e., no time
series information) can produce the best result; and the right number of hidden neurons
is determined using hill-climbing algorithm during training till the accuracy cannot be

further improved.

4.4 Experiments and Evaluations

The primary intention of our experiments is to evaluate accuracy and effectiveness of
the proposed QoS modelling approach with respect to the scale of data. Specifically, we
compare the accuracy of the proposed SSARMAX and S-ANN models with conventional
models in continuous time series. We also assess the sensitivity of our models to the size of

training data. Finally, we examine training efficiency by looking at the training overhead.

4.4.1 Experiments Setup

We conducted experiments on private cloud using a cluster of PMs, each of which has
Intel i7 2.8GHz Quad Cores and 4GB RAM. The PMs use Xen v3.0.3 [6] as the hypervisor
and the modelling process is running on Dom0. To eliminate the interference caused by
modelling, we allocated one CPU core and 1.2GB RAM to Dom0, which tends to be
sufficient. Our approach is implemented based on Encog [2] and Apache Mathematics
[1] using Java JDK 1.6. To simulate QoS interference caused by the VMs while not
exhausting resources, we run three co- hosted VMs on each PM; the remaining resources
are evenly allocated to the co-hosted VMs. All VMs run linux kernel v2.6.16.29.

Our experiments leverage on RUBIS [5], which is a cloud-based application consists of
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26 co-located software services using the eBay.com model. For simplicity, we have used
three RUBIS snapshots, each of which consists of a 2-tiers (i.e., application and database
tiers) based RUBIS application; the three RUBIS snapshots differ in terms of the database
volume size ranging from 1GB to 5GB data. Each RUBIS snapshot is deployed with a
software stack including Tomcat v6.0.28 and MySQL v3.23.58 on each co-hosted VM
of a master PM; and we have implemented sensors deployed on each service- instance
and VM for sending the online data to Data Collector. For each RUBIS snapshot on
the master PM, the application tier is replicated to all other servant PMs in the cloud;
these replicas are connected to the database on the master PM for handling any database
related requests. Finally, each of the three RUBIS snapshots and its replica are linked to
its dedicated load balancer. Three client emulators are used and they apply read/write
pattern to generate requests for each load balancer.

To simulate a realistic workload within the capacity of our testbed, we vary the number
of clients proportionally according to the FIFA98 workload [I4], which is compressed in
the way that the fluctuation of a day in the trend corresponds to 200s in our case. This
setup can generate up to 400 parallel requests, we believe that such compression is realistic
and large enough to simulate QoS interference in cloud.

We apply two deployment strategies for the benchmark. The first strategy D1 assumes
that all services of the application are hosted on one VM. The second strategy D2 involves
two VMs for each application replica, where the database server and web/application
server are deployed on different VMs. To facilitate the dynamic deployment in the cloud,
we switch the deployment from D1 to D2 on the fly by live-migrating the database
service. To further verify our modelling approach under unusual workload changes, we
apply the biding workload pattern for DI whereas the browsing pattern is used for D2.
The entire FIFA 98 workload trend is used for D1, and it is repeated again for D2. Due

to limited space, we only report on evaluation of the QoS models for one service-instance
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Table 4.2: The Examined QoS Attributes and Primitives.

QoS and Primitives Description

Response Time (ms) The average leaped time between a service-
instance receives and replies a request.

Output Throughput (req/min) The average rate of completed requests.
Availability (%) The percentage of time that the average response
time above a threshold. (60 ms)
CPU (%) Observed average CPU utilisation of a VM.
CP input Memory (MB) Observed average Memory utilisation of a VM.

Thread (no. of req)  Observed maximum concurrent threads of a
service-instance. (a modified control knob of Tom-
cat’s mazThread property)

EP input ~ Workload (req/min)  Observed average request rate of a service-
instance.

of a concrete service named SEARCHITEMBYCATEGORY.

4.4.2 QoS attributes and Cloud Primitives

For the simplicity of exposition, we report on a scenario, which considers the following
dimensions: three QoS attributes, two hardware control primitives, one software control
primitive and one environmental primitive, as listed in Table .2} Considering the fact
that there are 26 services in RUBiS benchmark, we need to produce 78 QoS models, each
of which can have at most 54 possible relevant primitives and thus this is a non-trivial
scale. Additionally, based on the real-life workload and benchmark, this setup sufficiently
provides us with valuable insight on the models’ behaviour when handling a large stream
of live data in complex and dynamic systems.

To sum up, there are three QoS models that need to be adaptively created for each
service-instance. The actual inputs to train and predict these three QoSs are the primitives

in their selected primitives matrix, which are adaptively determined by the Primitive

Selector and the used machine learning algorithms as explained in Section 4.3.2] and [4.3.3]

at Appendix [C| In the case of our experiments, the likely relevant primitives of each QoS
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would be selected from: CPU and memory demands of the web/application server VM;
CPU and memory demands of the database server VM (this is only available when switch
to D2); threads demands and workload for each of the 26 service-instances on the same

VM. To compare S-ANN and S-FARMAX, the QoS Function Trainer would simultaneously

produce two alternative models for each QoS.

4.4.3 Accuracy

To validate the correctness, we measure the accuracy of our QoS modelling approach on
the fly. The sampling interval is 30s with the total of 700 intervals. In particular, we
examine the accuracy of one interval ahead prediction. That is, by the end of interval t,
our approach trains QoS models based on historical data up to ¢-1 (¢-1 for environmental
primitives), the resulting model predicts the QoS at ¢ by using historical QoS values (for
S-ARMAX), the measured demands of control primitives up to current interval ¢ and value
of environmental primitives up to interval ¢-1. For all predictions, the accuracy is assessed

via Symmetric Mean Average Percentage Error (SMAPE) [58], which is computed as:

QoS} (1) — QoSY(t)]

|
SMARE = Z QoS} (1) + QoS (t)

(4.9)

where K is the total number of intervals, SPg(t)’ denotes the measurement of the kth
QoS of S;(t) at interval ¢ whereas SPY(t) denotes the prediction for the same QoS at
the same interval. It has been shown that SMAPE is intuitive, stable and more resilient
to outliers than the other metrics [I00]. Notably, we regard zero value of QoS as invalid
measurement, because it only represent the fact that no one has requested a certain service
at a point in time.

To further evaluate the improvement to conventional semi-dynamic approaches, we
compare the accuracy of our S-FARMAX and S-ANN models against the conventional
ARMAX e.g., [141] and ANN e.g., [90] based models, which only consider limited and fixed
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Table 4.3: Comparative Summary of QoS Prediction Accuracy for A Service-Instance of
SEARCHITEMBYCATEGORY. (the best is highlighted in bold)

SMAPE of Prediction (%) .~ RSD (%)

S-ANN C-ANN S-ARMAX C-ARMAX
per- per- per- per-
service  app service  app

Response Time | 6.97 | 12.76 | 31.72 11.43 15.08 | 34.03 120.61
Throughput 11.14 | 16.88 | 35.28 7.99 13.22 | 37.82 86.41
Availability 0.96 0.38 1.36 0.01 0.01 1 2.24

hardware control primitives, such as the CPU and memory of the web/application server
VM. In addition, they do not cater for QoS interference. We denote these conventional
models as C-ARMAX and C-ANN. Given that these models rely on fixed number of
relevant primitives, their number of order and hidden neurones are fixed and are obtained
by examining given set of measured data (we discovered that in our case set ¢ as 2 for
C-ARMAX and 18 hidden neurones for C-ANN could result in the best model). These
conventional models predict QoS on per-application basis (denoted as per-app), whereas
our models are per-service models. Thereby to eliminate noise caused by granularity, we
also compare our models with modified, per-service version of C-ARMAX and C-ANN.
To analyse the correlation between model accuracy and the variation of measured QoS
trend, we apply Relative Standard Deviation (RSD) to measure how fluctuation of the
QoS tends to be in a relative manner, such metric is calculated as: RSD = o/u, where o
is the standard deviation and p is the mean of all measured QoS values.

The accuracies of all the comparative models are summarised in Table [£.3] It clearly
indicates that our S-ANN reduces the error from 31.72% to 6.97% for response time;
from 35.28% to 11.14% for throughput and from 1.36% to 0.96% for availability, when
compared to per-application C-ANN model. In contrast to per-service C-ANN, the S-ANN
also reduces 5.79% error (12.76% to 6.97%) for response time and 5.74% error (16.88%

to 11.14%) for throughput. The only exception is that the S-ANN tends to produce
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0.58% (0.38% to 0.96%) higher error for availability. We believe that this is because the
RSD of availability is relatively small and thus the influence caused by dynamic QoS
sensitivity tends to be trivial, which could easily cause over-fitting. On the other hand,
our S-ARMAX is superior to both per-application and per-service C-ARMAX models. In
particular, SSARMAX reduces the error from 34.03% to 11.43% for response time; from
37.82% to 7.99% for throughput and from 1% to 0.01% for availability, when compared
to the per-application C-ARMAX model. In contrast to per-service C-ARMAX, the S-
ARMAX also reduces 4.45% error (15.08% to 11.43%) for response time and 5.23% error
(13.22% to 7.99%) for throughput. The prediction error for availability remains the same.
To conclude, it is clear that both of our SSANN and S-ARMAX offers better accuracy
than the C-ANN and C-ARMAX models.

An interesting discovery is that nonlinear model like S-ANN handles the dynamic
QoS sensitivity better when the fluctuation of measured QoS increases (e.g., for Response
Time and Throughput with high RSD), whereas the linear SSARMAX produces less error
when such fluctuation decreases (e.g., for Availability with low RSD). This is a useful
conclusion as it implies that to better handle the dynamic QoS sensitivity, we shall also
adaptively determine the best techniques to train QoS function at runtime.

To provide more detailed view of accuracy when using the proposed modelling ap-
proach, Figures illustrate the total of 616 valid measurements of the actual QoS
and predicated values produced by S-ANN and S-ARMAX. More precisely, Figure
demonstrates the trends for response time. Although the figure shows that error tends
to increase for some of the peak points, it is obvious that both models still produce good
prediction even for DI (from interval 1 to 310), where the QoS trend highly fluctuates.
Similar observation occurs in Figure [4.4] which illustrates the trends for throughput. As
for the availability in Figure [£.5] we can observe that S-ARMAX is better than S-ANN

for D2. This is because training the ANN model with stable data (e.g., interval 1-174)
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Figure 4.5: Actual and Predicated Availability.

followed by sudden fluctuation (at interval 175) can easily cause over-fitting, which even-
tually influences the ANN'’s prediction accuracy. Nevertheless, we can see that the S-FANN
is adaptive enough to correct itself; the prediction becomes better and more stable from
interval 230. On the other hand, S-FARMAX obtains perfect prediction fit for availability

in all the intervals.

4.4.4 Sensitivity of Accuracy to Training Data Size

To understand the sensitivity of model accuracy to the training data size, we divide all
the measured intervals into 70% as training data and the rest 30% as testing data. Both
S-ANN and S-ARMAX are trained based on a portion of the training data, ranging from
40% to 100%. As shown in Figure [4.6] it is evident that both models improve their
accuracy as the size of training data increase. In particular, S-ANN is less sensitive to

the training data size and produces acceptable accuracy even under limited data.
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4.4.5 Overhead

Finally, we examine the overhead to train our sensitivity-aware QoS models with all the
training data points. We observed that the time taken to calculate relevance driven
primitives selection is rather trivial in our case. From Figure 4.7 we can clearly see that
both models have training overhead less than 10s while S-FARMAX is relatively more
efficient in all cases as it has simpler structure. Therefore, the training overhead of our

models is acceptable within the sampling interval of 30s.

4.5 Discussion of Limitations

It is clear that the experiment results have demonstrated the effectiveness of our QoS
modelling approach. However, as we observed during the experiment process, there are
still limitations for the modelling approach to become fully self-aware and further improve

its self-adaptivity. These limitations are discussed as below:
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Figure 4.7: Overhead of QoS Modelling.

e Since the proposed QoS modelling approach in this chapter is specifically tailor for
handling the QoS interference at the service level, it has not considered the QoS
interference caused by co-hosted VM on a PM. This limitation can restrict the
application of the approach in scenarios where resource contention becomes a major

issue at the virtulization level.

e We have leveraged on relevance driven technique for selecting the primitives as model
inputs. However, we subsequently observed that this technique constantly results
in a large number of selected primitives in the QoS model. This will result in an
overcomplicated model, which can cause the following problems: firstly, it renders
the decision for selecting the right elastic autoscaling decision difficult when using
the model. Secondly, certain learning algorithms can easily over-fit the model and

thus affect its accuracy.
e As we have discussed in Section the experimental results suggest that dif-
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ferent learning algorithms tend to perform quite differently depending on the QoS
fluctuation trends and primitives combination. This result indicates that given the
generality of the proposed QoS model, the single learning algorithm is limited as we
can not determine which algorithm to use without expensive and extensive analysis.
In addition, even such process is performed, the offline analysis can still become

invalid at runtime.

In the next chapter, we propose an improved QoS modelling approach with the aim

to overcome these limitations and the related challenges.

4.6 Conclusion

In this chapter, we have proposed a novel self-aware and self-adaptive QoS modelling
approach grounded on symmetric uncertainty and two machine learning algorithms, AR-
MAX and ANN to reach two formulations of the QoS model. These techniques provide
the foundations to enable self-awareness for QoS modelling in the cloud. In this way, the
approach can capture the dynamics of QoS sensitivity by determining which, when and
how primitives correlate with QoS at runtime. In addition, we cater for QoS granularity,
QoS sensitivity and QoS interferences. Our approach considers fine-grained model as well
as both software and hardware control primitives. By mapping to the self-awareness capa-
bilities, we have implemented our approach as a independent component that adaptively
creates fine-grained QoS models. We have experimentally evaluated our approach with
respect to accuracy, sensitivity to data size and efficiency using the RUBiS benchmark
and the FIFA 1998 workload trends. The results reveal that our approach is effective
and produces better accuracy as when compared with the conventional models in various
cases. Experiments also imply that the proposed S-ANN tends to be more accurate than
S-ARMAX, when the fluctuation of QoS increases. On the other hand, SSARMAX tends

to be better when the QoS trends is relatively stable.
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As mentioned in section [£.5] there are challenges remaining for QoS modelling in the
cloud, in the next chapter, we report on an improved approach and demonstrate the

necessity and effectiveness of such improvement.
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CHAPTER 5
IMPROVED QOS MODELLING USING
HYBRID AND ADAPTIVE

MULTI-LEARNERS

5.1 Introduction

Modelling QoS for cloud-based services is an important and necessary, yet challenging
task. As mentioned in Chapter |2| and , existing static (i.e., analytical and simulation
based) or semi-dynamic modelling approach (i.e., those that rely on manual and static
primitives selection) lack in their ability to handle dynamics and uncertainty in the cloud.
In particular, they tend to be limited in dealing with QoS interference, primitives selection
and QoS function training. As one of the key contributions of this thesis, in Chapter [4], we
have proposed and discussed a self-aware, self-adaptive and fine-grained QoS modelling
approach in the cloud. This solution and many other existing modelling approaches,
e.g., [00] [107], are called single learner-based as they apply single primitives selection
technique and learning algorithm to model QoS. We have also demonstrated that the

proposed approach in Chapter {4]is able to achieve better accuracy in contrast to existing
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semi-dynamic modelings. However, our subsequent investigations have revealed several
limitations of such approach. Firstly, it ignores the QoS interference caused by VMs
co-hosted on the same PM [116]. Secondly, the single learner-based approach can easily
result in a QoS model with large numbers of inputs due to its over-sensitive nature when
handling QoS interference. This will unnecessarily complicate the model and downgrade
the prediction accuracy. Thirdly, we have observed that different learning algorithms (e.g.,
ANN and ARMAX) can be suitable only for certain QoS trends; however, a single learner-
based approach requires the engineers to predetermine the suitable learning algorithm.
This can entail manual and extensive investigation rendering it as an expensive process.
Moreover, a predetermined approach does not cater for unexpected or envisioned changes

in QoS at runtime.

5.1.1 Motivations and Challenges

As mentioned in Chapter [4] the improvements of the QoS modelling approach have been
motivated by our subsequent investigation from the experiments. Specifically, the moti-
vations and the new challenges can be discussed as the following:

Dynamic and Uncertain QoS Interference at both service- and VM-level:
We have classified QoS interference into two categories: the co-located service interference
and co-hosted VM interference. The former is an inherent issue from the traditional
cluster computing, where multiple applications/services running on the same operating
system can suffer contention on the shared memory /cache, and therefore cause interference
[50]. This is also true for multi-core systems [I12]. The latter, on the other hand, is a
significant unique problem in cloud computing, where virtualization has been used as the
basis. This is because in such scenario, certain aspects of the underlying infrastructure
are shared amongst the co-hosted VMs on a machine (e.g., last level cache of CPU and

memory bandwidth), henceforth it can result in contention and create the chances for
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interference, as evident by many recent work [116] [91] [86] [99]. Given that it can be
extremely difficult to completely eliminate QoS interference or it can be too expensive to
do so [116], it is crucial to consider and handle the interference when modelling QoS in the
cloud. In particular, it is important to consider the QoS interference at both service- and
VM level as they influence QoS in a dynamic and joint manner. Here, the challenge lies in
the difficulty to dynamically incorporate information about interference in the modelling,
especially when the QoS interference is dynamic and uncertain in nature—it is difficult to
know when contention would occur and what the degree of such contention is. However,
as we have extensively surveyed in Chapter [2] existing work either consider co-hosted VM
interference only (e.g., [I16]) or completely ignore QoS interference (e.g., [90]) relying on
the assumption that interference would never occur, which is unrealistic. As a result,
modelling QoS without considering QoS interference at both service and VM level can
downgrade the accuracy and/or lead to incorrect autoscaling decision.

Dynamic and Uncertain Primitives Selection: In Chapter [d] we have already
discussed the dynamic and uncertain nature of primitives selection. We have proposed a
relevance driven technique to cope with this problem. Given that the selected inputs have
a great impact to the model accuracy (as we will show in Section , it is important to
select a right set of primitives. In particular, too limited inputs may not provide enough
information of relevance to the QoS (i.e., the information that drives the changes in QoS),
thus the accuracy may be insufficient. In addition, limited inputs of a model implies that
it is not intuitive and can not be used in many scenarios. On the other hand, too many
inputs can generate noise in the modelling (as we observed in the previously proposed
relevance driven technique), because it introduces irrelevant information and large re-
dundancy in the inputs (i.e., the same information has been provided by more than one
selected primitives, thus it becomes noise), this will downgrade the model accuracy [110].

Moreover, it can over-complicate the model, causing difficulties in its application. Though
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some machine learning algorithms are proven be be resistant to noise e.g., [132], we believe
that the benefits gained from primitives selection is vast, e.g., improved accuracy, more
intuitive model and faster modelling time. The challenge here is how to dynamically select
the most significant set of primitives as inputs, which provides good model accuracy
and adequate complexity. In addition, incorporating the information of QoS interference
makes this challenge even more difficult, because the control knobs and environmental
conditions of neighbours services and VMs can become possible inputs in the model.
Nevertheless, as we have extensively surveyed in Chapter [2] existing static and semi-
dynamic approaches for QoS modelling in the cloud rely on fixed and manual analysis to
select the primitives as inputs, which are often offline. It is easy to see that a thoroughly
offline and manual analysis would require extensive and careful human intervention by
taking every permutation of the primitives into account. Therefore, one trick that has
been widely applied is to reduce the possible primitives space based on empirical observa-
tions and domain specific assumptions, e.g., most work [I16] [90] consider only hardware
resources. However, this may mislead the QoS modelling and downgrade accuracy as it
can ignore some highly relevant features, e.g., the software configurations, which can inter-
play with the hardware provision to influence QoS; these are often the primary causes of
QoS violations [26] [139] [99]. In addition, ignoring QoS interference can result in inaccu-
rate models. Even though the offline and manual selection is achieved at a good accuracy,
the runtime dynamics and uncertainties can become a problem as there is no guarantee
that the selected primitives are the best for the entire service life time. Until recently,
few techniques [133] [26], including our relevance driven technique presented in Chapter
[} have been proposed for self-adaptive primitives selection in the cloud. However, they
implicitly tackle redundancy and regard each primitive equally in the selection. We refer
these techniques as single-learner based in the remaining of this thesis. In Section [5.6, we

will show why these single-learner based techniques tend to be limited in accuracy.
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Dynamic and Uncertain Suitability of Learning Algorithms: As we have
surveyed in Chapter [2] the application of machine learning algorithms for QoS function
training in many existing approaches, including the approach presented in Chapter [4]
are mostly single-learner based, providing that they rely on a single learning algorithm.
Nevertheless, as we mentioned in Chapter [4, we observed that a single learning algorithm
can be suitable only for certain QoS trends, and such suitability is dynamic and uncertain
in nature. Consequently, a significant drawback of these approaches is that, for any given
scenarios, they require the engineers to predetermine the suitable learning algorithm. This
can entail manual and intensive investigation rendering it as an expensive process. More-
over, a predetermined algorithm does not cater for unexpected or envisioned changes in
QoS at runtime. Now, the challenge becomes how to efficiently and dynamically determine
the best learning algorithm for different scenarios.

All these challenges exhibit high complexity, runtime dynamics and uncertainties,
which urge the need for a fully dynamic, accurate and self-adaptive QoS modelling ap-

proach that continually evolves itself in the cloud.

5.1.2 Contributions

In this chapter, we propose an improved QoS modelling approach to overcome the above
limitations and challenges using hybrid and adaptive multi-learners, which are the key
enablers of realising better self-awareness for QoS modelling in the cloud. The approach
is capable to dynamically select only the most significant set of primitives as model inputs;
while improving the model accuracy. Furthermore, it adaptively selects the most suitable
learning algorithm for training the QoS function given a QoS trend and inputs combina-
tion. In addition to ANN [I19] and ARMAX [22], we further introduce RT [117] as one of
the candidate learning algorithm. This is because the tree structure of RT [I17] distincts

itself from the other two learning algorithms, hence introducing extra variability in the
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model selection process. All these techniques improve the self-awareness capabilities of
the QoS modelling approach. The experiment results reveal that our approach is overall
more accurate, more stable and reduce the error quicker than the other approaches; while

generating acceptable overhead.

5.2 Partitioning of Cloud Primitives

We adopt the same cloud system model, assumptions and the generic QoS model as
described in Chapter [l To improve accuracy and prevent noises, selecting the right
primitives as inputs is critical for QoS modelling in the cloud. However, the difficulty
is that the primitive inputs, which are relevant and useful for modelling QoS in the
cloud tend to be dynamic. In such context, possible inputs of a QoS model can be the
primitives that tend to directly influence the QoS (e.g., the threads of the corresponding
service-instance); it can also include the primitives that belong to the co-located service-
instances and the co-hosted VMs; As discussed in Chapter [4] all possible primitives inputs
for modelling the QoS attributes of a service-instance form a space, which we call possible
relevant primitives space. To incorporate the QoS interference caused by co-hosted
VMs, we additionally extend the possible relevance primitives space for each service. The

extension is described as follow:

Rule 5.1. A primitive belongs to the possible relevant primitives space for modelling the

QoS of Sy, if it can be classified into one of the following groups:

1. It is a software control or environmental primitive of Sgp.
2. It is a hardware control primitive of the VM that runs Sgp.

3. In case of Su, has direct functional dependency on S.q, it is a software control or

environmental primitive of Seq.
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4. In case of Sa has direct functional dependency on S.q, it is a hardware control

primitive of the VM that runs S.q.

5. It is a software control or environmental primitive of S.q, which is co-located with

S on the same VM.

6. It is a hardware control primitive of the VM, which is co-hosted with the VM that

runs S, on the same PM.

Rule 5.1 distincts from Rule 4.1 in the fact that it contains an additional condition
6, which aims to capture the information about QoS interference at the VM level. The
problem here is how to select on-the-fly a right subset of primitives from the space as
the inputs of QoS models. Instead of selecting only the relevant primitives as mentioned
in Chapter [4] we intend to select the most significant primitives. The aim is to improve
the model’s accuracy by taking both relevance and redundancy of the primitives into
account. In Section [5.4] we will present detailed analysis and solution for selecting the

right primitives.

5.3 Improving Architecture for QoS Modelling in the
Cloud

Given that we introduce more requirements for self-awareness in the QoS modelling pro-
cess, the architecture is required to be improved and the related new components needs
to be mapped to self-awareness capabilities. As shown in Figure [5.1] the approach is
again realised as middleware using autonomic architecture with a feedback loop. The
service-instances running on the VMs of a PM are managed by a dedicated Middleware
Instance (MI), which is attached to the root domain (e.g., Dom0 [6]) of this PM. Each

MI is self-adaptive as the feedback loop runs continually to keep the models updated.
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Figure 5.1: The Improved QoS Modelling Architecture.

Our approach is designed for online scenarios; the only offline preparation is to define
the current service-instances, their QoS and classification of the primitives in the spaces
(i.e., using Rule . This preparation can be easily done by the cloud engineers and it
should be updated accordingly if changes occur. The approach can be also used offline in
situations where conducting offline modelling in advance can be beneficial to the online
models. Within the feedback loop, Data Collector continually monitors and stores sample-
values of QoS and primitives from the service-instances/VMs of a PM, and those from the
other PMs in the presence of functional dependency. This can be achieved by accessing
the cloud sensors or log files. It is worth noting that the modelling interval can be longer
than the sampling interval; that is to say, the frequency of data collection do not need to
be the same as the frequency of modelling, in which case the sampled data can be stored
in a history database and retrieved when needed.

Upon each modelling interval, for each QoS attribute of a service-instance, all historical

data is then passed to the primitives selection phase for determining which and when
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Table 5.1: The Mapping Between the Additional Meta-Self-Awareness Capability and the
Sub-Components.

Self-Awareness Ca- Component Description

pability

Meta-self- QoS Function | Knowing the suitability of candidate learning
awareness Trainer algorithms.

primitives correlate with QoS at runtime (step 1). Here, we have used two learners to
select primitives from two sub-spaces as motivated by our analysis in Section [5.4 At step
2, the selected sets of primitives are combined and sent to the QoS function training phase,
where multiple learners are used to model how the primitives correlate with QoS online
(step 3). At step 4, each QoS attribute is associated with a bucket of models produced by
candidate learners and an evaluation function; in addition, the weights in the evaluation
function will be updated. This bucket can be then used by, e.g., a Decision Maker for
performing prediction at any time (step 5). Upon prediction when given a set of inputs,
the evaluation function is used to select the best model in the bucket (see Section [5.5]).
As one of the extensions to the architecture described in Chapter |4, we incorporat-
ing meta-self-awareness in the QoS modelling process. Such self-awareness capability is
particularly helpful for reasoning at the meta-level, i.e., to determine which is the best
learning algorithm. In addition to Table 5.1} the mapping between the sub-components
of the improved QoS Modeller and the meta-self-awareness capability is demonstrated in

Table 5.1

5.4 Primitives Selection in the Cloud

Recall from 1D and ,to dynamically model QoSff(t)at runtime, the first challenge
is to determine which and when the underlying primitives should be included as column

entries in SP{ (t) for the QoS modelling.
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One straightforward solution to the primitives selection problem is to search the best
set of primitives using a given learning algorithm that guarantee to produce the best ac-
curacy for the said algorithm; this is regarded as the wrapper approach [80]. Nevertheless,
given that the learning algorithm needs to be run many times during the selection process,
it is clear that such approach can introduce large overheads in terms of both resource and
latency. As a result, the wrapper approach is not well-fit for online QoS modelling in the
cloud. In this work, we focus on an alternative approach that is more efficient and capable
to select primitives independent of the learning algorithms, namely the filter [80].

We define two main objectives for the primitives selection, namely, selecting relevant
primitives and selecting useful primitives from the possible relevant primitives space. The
former try to select all relevant primitives, which can be easily achieved; while the later
aims to further select an even better set of primitives that has a right balance between
relevance and redundancy, which improves the model accuracy.

In this section, we present a set of experimental analysis on the relevance and redun-
dancy of selected cloud primitives in relation to model accuracy. Subsequently, driven by
the observations gained from the conducted analysis, we propose a self-aware, self-adaptive

and online solution for primitives selection, namely hybrid dual-learners.

5.4.1 Quantifying Relevance and Redundancy

To quantify the relevance of a primitive to the QoS and the redundancy between a pair of
primitives, we have used Symmetric Uncertainty (SU), which is a fundamental concept in
information theory [I30]. As presented in Chapter [ by using (4.3)), it is straightforward
to measure the relevance of a primitive to QoS. As for redundancy, we consider it as the
relevance between a pair of primitives, which can be also easily quantified via . It
is known that SU can provide correct information about the relative effects of relevance

and redundancy for a pair of individual primitives on the model accuracy [110].
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Nevertheless, the single SU value and pair-wised comparison are insufficient for select-
ing useful primitives as they cannot consider both relevance and redundancy simultane-
ously in the selection. In addition, it cannot properly quantify the effects of combinatorial
relevance and redundancy to model accuracy for a whole set of selected relevant primi-
tives. This means given two sets of selected relevant primitives, such comparison cannot
determine which set will produce better model accuracy during the selection. Our prob-
lem requires a measurement that copes with those issues. As a result, we need to study
and select useful primitives by comparing the cumulative representation of relevance and
redundancy for any possible sets of selected relevant primitives.

There can be two forms of cumulative representation: firstly we can consider multi-
variable density function for a given set of selected relevant primitives, in which case

would be changed into the following formula [110]:

2 X I(XLXQ...XTL, Y)
H(X, Xo.. X,) + H(Y)

where [X;, Xs...X,] denotes vectors of n different primitives that has been selected; and
S denotes the set of selected primitives. (b.1)) expresses both relevance and redundancy
as they can be handled by the multivariable density function. However, this method
has some serious drawbacks: (i) the number of online data samples can be insufficient
for correctly calculating the probability and (ii) the multivariate density estimation often
involves computing the inverse of the high-dimensional covariance matrix, which is com-
putationally expensive and thus it is an ill-suited solution in our case. Alternatively, we
can compute the cumulative SU values of relevance and redundancy. By cumulative SU
values, we refer to the cumulative combination (i.e., total or average) of the single SU
values for the primitives in a given set of selected relevant primitives [110]. An example

of relevance is shown below:
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Relevance of a selected set = Z UX,Y) (5.2)

XeS

This cumulative combination involves a bi-variable density function only and thus it is
more appropriate for filtering at runtime. In addition, it is highly intuitive and the nature
of cumulative combination implies its light computational efforts. The cumulative repre-
sentation for redundancy can be similarly applied. In this work, we call these cumulative
representations as cumulative relevance and cumulative redundancy.

Recall that in selecting useful primitives, we aim to improve the model accuracy by
balancing the relevance and redundancy of selected primitives. With this in mind, it is
easy to see that even if we incrementally select (add) the relevant primitives one at a time,
the validity and usefulness of cumulative relevance and redundancy rely on the following

assumption (in the next subsection, we will experimentally verify this assumption):

Assumption 5.1. For QoS modelling in the cloud, the model accuracy, represented by er-
ror, 1s negative to the difference between cumulative relevance and redundancy if the cu-
mulative relevance is bigger (i.e., the bigger the difference, the smaller error); or being
positive to such difference if the cumulative redundancy is bigger (i.e., the bigger the dif-

ference, the bigger error). O

Indeed, if this assumption does not hold, it means that the cumulative SU values
cannot correctly differentiate and quantify the effects of some relevant primitives to the
model accuracy, and this will significantly mislead the selection process.

In the following, we report on a set of experimental analysis, which are about how
the relevance and redundancy of selected primitives affect the model accuracy for QoS

modelling in the cloud.
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Figure 5.2: The Relevance of Different Cloud Primitives to Response Time for the Exam-
pled Service-Instance.

5.4.2 Relevance and Redundancy Analysis on Primitives Selec-
tion
To study the correlation of selected primitives to the accuracy for modelling QoS in the
cloud, we have conducted several analysis on the relevance and redundancy of selected
primitives by means of experiments (see Section for the detailed setup). In particular,
we have carefully analysed the relevance between possible primitives and QoS from the
experiments—we first select the relevant primitives and then we rank them based on
their relevance to the QoS. We found that the only constant observation across many
QoS attributes and service-instances is that for each feature dimension (i.e., thread, CPU,
Memory and Workload), certain primitives are more relevant to the QoS than all or most of
the others. As an example, Figure [5.2shows the relevance (measured by (3)) for Response
Time of a service-instance for different feature dimensions, calculated by averaging the
values from all 350 intervals in one run. We discovered that the more relevant primitives

are the ones that can directly influence the corresponding service (dark bars), e.g., the
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thread of the service and CPU of the VM; on the other hand, the less relevant primitives
are the ones that can only interfere the service and its QoS via contention (light bars), e.g.,
the thread of co-located service and CPU of co-hosted VM. Such observation indicates
that the former is more important to the QoS than the latter as QoS interference can only
occur when the contention is quite significant [I16]. This fact motivates us to partition
the possible relevant primitives spaces into two sub-spaces, namely the direct primitives
space and the indirect primitives space. By leveraging the classifications in Rule [5.1} the

former is defined by:

Rule 5.2. A primitive belongs to the direct primitives space for modelling the QoS of Sy
if it is in group 1,2,3 or 4 from Rule[5.1] O

It is clear to see that the direct primitive space contains primitives that can directly
influence the QoS, which means they tend to provide different aspects of information.
On the other hand, the indirect primitives space contains information about the QoS

interference. Consequently, the indirect primitive can be defined as:

Rule 5.3. A primitive belongs to the indirect primitives space for modelling the QoS of
Sap if it 1s in group 5 or 6 in Rule (.1, U

It is worth noting that the indirect primitives space should generally be larger than the
direct primitives space as it is sensitive to the number of co-located service and co-hosted
VMs, which can be expended largely in the cloud. It is possible that both direct and
indirect primitives space have irrelevant primitives, but as mentioned, these can be easily
eliminated.

We have experimentally verified the validity of Assumption for direct and indi-
rect primitives spaces, as specified in Appendix [B] Particularly, we have observed that
Assumption [5.1]is true for intra-indirect primitives space. However, for inter- direct and

indirect spaces, this assumption does not hold; for intra-indirect primitives space, this
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assumption is invalid either. We believe the reason being is that Assumption can be
easily violated when there are certain primitives providing different aspects of informa-
tion to the QoS (e.g., different dimensions of primitives and QoS interference). However,
the assumption is effective for the primitives purely contain information about QoS in-
terference, i.e., those in the indirect primitives space. Therefore, a single-learner based
technique (i.e., considering all primitives equally) tends to be insufficient for the primi-
tives selection as it will mislead the selection process. We have also found that the best
accuracy is achieved by the combination of direct and indirect primitives, which prove the
importance of considering QoS interference in the modelling.

All these facts urge the need for a self-aware, self-adaptive and online primitives se-
lection for modelling QoS in the cloud, which we address in this chapter. Given that
the cumulative relevance and redundancy can mislead the selection when Assumption
does not hold and the fact that it is very difficult to efficiently handle the selection
without cumulative representations, we have decided to avoid the misleading selection
by partitioning the space. To better tackle the problem of relevance and redundancy in
primitives selection, we intend to partition the primitives that provide different aspects
of information to the QoS into sub-spaces, and select the useful primitives from each

sub-space independently using cumulative relevance and redundancy.

5.4.3 The Hybrid Dual-Learners for Primitives Selection

To adaptively and dynamically select primitives as the model inputs online, we design a
runtime filtering mechanism based on symmetric uncertainty, which has the advantage
to assess the effects of selected primitives on model accuracy without actually training a
model. Based on the analysis in Section [5.4.2] we use multi-learners in order to avoid the
aforementioned issues caused by single-learner based technique. In particular, we partition

the primitives that provide different aspects of information on the QoS into sub-spaces;
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this will result in k+1 partitions, where k is equal to the number of primitives in the
direct primitives space; while the remaining one partition refers to the indirect primitive
space. The objective is to select useful primitives from each sub-space independently
using dedicated learners and then produce an ensemble results as the selected inputs for
modelling. By doing so, we aim to produce a model with adequate model complexity and
improved accuracy.

Inspired by [110], for each sub-space, we formalise a maximal Relevance Minimal
Redundancy (mRMR) learner using cumulative relevance and redundancy. The objective

of this learner is to continually select the primitives that maximise:

maz ®(S,Y), s.t. UX,Y)>0,X¢e€S (5.3)

where X corresponds to the value vector of a primitive and Y to the value vector of QoS
attribute. S denotes the associated sub-space. Mathematically, the objective function ®
can have four possible variations, depends on whether we use total or average to represent
cumulative SU values; and whether we apply multiplicative or additive formulation to
represent the difference between cumulative relevance and redundancy. Specifically, we

obtain several variations of the objective function in (5.3)):
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Z&es U(Xv Y)

Total and multiplicative: 1+ ¢ xres UX, X) (5.4)
2xes UXY) x (n—1)
o (5.5)
Average and multiplicative: n2 —n+2x >y ves UX, X)
/
Total and additive: Z U(X,Y) - Z U(X, X' (5.6)
Xes X,X'eS

PxesUXY) 2 Doxxves UX, X)

n n?—n

Average and additive:

(5.7)

where X’ is the value vector of another primitive. n is the number of primitives, which
has been already selected; U is the function of symmetric uncertainty in . It is clear
to see that the constraint filters all the irrelevant primitives and this can be done easily. In
this work, we apply incremental random search to optimise these functions for simplicity;
however, it can be easily replaced by more sophisticated algorithms (e.g., hill-climbing,
integer optimization and evolutionary algorithm). In Section we will experimentally
compare these variations.

Given that the Assumption does not hold in indirect primitive space, we apply
dedicated mRMR learner for each sub-space independently. However, because there is
only one primitive exist for each k sub-space, the objective here is equivalent to select the

relevant primitives from all k£ sub-spaces, therefore these sub-spaces can be merged into
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one and the multiple mRMR learners can be simplified to the following single maximal
Relevance (mR) learner. The objective of this learner is to continually select the primitives

that maximise:

maz U(D,Y), ¥ =Y U(X,Y), s.t.UX,Y)>0 (5.8)
XeD
where D denote the associated direct primitive space all the notations are the same as
(6). Again, the constraint filters all the irrelevant primitives.

As for indirect primitives space, we use a mRMR learner for this sub-space, given that
the Assumption is true and the indirect primitive space tends to provide the same
aspect of information to the QoS.

Eventually, we only need to partition the possible relevance primitives space into two
sub-spaces, each of which employs learners with different primitives selection techniques
(i.e., mR learner and mRMR learner). The final results are combined to form the selected

useful primitives. We call this as the hybrid dual-learners technique.

Algorithm 1 Hybrid dual-learners for primitives selection

Inputs:

given the value vector Y of a QoS attribute QoS g , the associated direct primitives
space D and indirect primitives space ID

Declare:

Cirect - the collection of selected direct primitives

Cindirect - the collection of selected indirect primitives

Outputs:

the column entries of the selected primitives matrix SPZ(t)

1: start primitives selection

2: Cdirect = @7 Cindirect = (D)

3: Cireet = argmax ¥(D,Y) =3, UX,Y), st.UX,Y) >0

4: Cingirect := argmazx ¢(S,Y) = 1+§;‘j€i(§(’2x) if 1} is applied.
5: end primitives selection

An algorithmic description of the primitives selection phase is illustrated in Algorithm
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1. We will show (in Section that the proposed hybrid dual-learners technique leads

to better accuracy as when compared to other single-learner based and manual solutions.

5.5 QoS Function Training in the Cloud

Recall from 1) once the primitives in SP,?(t) are selected, our next goal for QoS
modelling is to determine how those primitives correlate with QoS Z (t)in the QoS function
v ().

Existing work has considered variety of learning algorithms for QoS function training,
ranging from simple linear model [I07] to complex nonlinear ones [90]. These algorithms
are self-adaptive and dynamic in nature thus they are capable to deal with dynamic and
uncertain magnitude of primitives in the correlation. In this section and by means of
experiments, we study the accuracy of the most widely used single learning algorithms
(i.e., ANN, ARMAX and RT.) for QoS modelling in the cloud. We assess the accuracy of
the learning algorithms over four different QoS attributes—Response Time, Throughput,
Reliability and Availability (see Section for their detailed definitions). Finally, we
present a self-aware, self-adaptive and online solution for QoS function training, namely

adaptive multi-learners, to address the issues discovered.

5.5.1 Sensitivity-Aware Regression Tree

To increase variability in the QoS function training, Regression Tree (RT) [I17] is the
final learning algorithm we have considered in this thesis. A possible structure of RT has

been shown as below:
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0.748 | cPa’(t) | 0.998 Z””

subject to CP™(t), EP™(t — 1) € SPJ(t) (5.9)

RT is a learning algorithm that maps the relation of primitives and QoS into a tree-
like structure, in which leaves represent class labels and branches express conjunctions of
features to reach these labels. The tree is trained using the Classification and Regression
Trees (CART) technique [24] and we found that use ¢g=1 (i.e., no time series information)
can produce the optimal results. By using the primitives selected from the primitives
selection phase as model inputs and continually updating the RT models online, we achieve

a sensitivity-aware RT, which is similar to our design for the sensitivity-aware ANN and

ARMAX.
5.5.2 Suitability Analysis of Learning Algorithms On QoS Func-
tion Training

For simplicity of exposition, we illustrate the results for a service-instance for the three

learning algorithms over the four QoS attributes. We have used the variation in for
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primitives selection. To better interpret the result with respect to different trends of
QoS attributes, we apply Relative Standard Deviation (RSD) to measure the fluctuation
of the QoS in a relative manner, calculated as: RSD = o/u, where o is the standard
deviation and p is the mean of all measured QoS values. We can observe from Table
that the RSD value of the QoS attribute can be sorted by the following ascending
order: Availability, Reliability, Throughput to Response Time; this means the trend
of Response Time being the most fluctuated one. At the other extreme, the trend of
Availability being the most stable one. As shown in Figure[5.3] we can clearly see that the
accuracy achieved by a learning algorithm differs significantly from case to case—ANN is
the best for Response Time and Throughput while the ARMAX is the best for Reliability
and Availability. In particular, the results of ARMAX reduces the error to 0.03% for
Reliability and Availability; while ANN tends to be significantly better than ARMAX for
Response Time and RT for Throughput. Beside, even though RT perform the worst for
most of the cases, it can still largely reduce the error in contrast to ARMAX at the case
of Response Time.

An interesting discovery is that, if we interpret the results from Figure [5.3]in conjunc-
tion to the RSD of different QoS attributes, we can see that the ANN tends to perform
better than ARMAX on Throughput and Response Time where the fluctuations of trend
are relatively large; and this improvement tends to increase from Throughput to Response
when the trend becomes more fluctuated. On the other hand, ARMAX tends to produce
better accuracy than ANN on Reliability and Availability, where the fluctuations of trend
are relatively small; and this improvement tends to increase from Reliability to Availabil-
ity when the trend becomes more stable. These observations reveal that nonlinear model
like ANN can better handle the dynamic and uncertain magnitude of primitives in the
correlation leading to better accuracy when the fluctuation of the QoS increases, whereas

the linear ARMAX produces less error as such fluctuation decreases.
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Table 5.2: The Relative Standard Deviation of QoS for A Service-Instance.

QoS Attribute

Response Time 4.197056205058521

Throughput 0.6629050477197764
Reliability 0.011793827516559515
Availability 0.010681646537192316

EANN 0.45 B ANN 0.43

BARMAX

@RT ORT
21.89

SMAPE (%)

0.15

0.05 0.03 0.03

Response Time Throughput Reliability Availability

(a) Response Time and Throughput. (b) Reliability and Availability.

Figure 5.3: The Model Accuracy of Each Learning Algorithm on Difference QoS At-
tributes.

All these experimental results suggest that the learning algorithms perform quite dif-
ferently depending on the QoS fluctuation trends and primitives combination; henceforth,
we cannot reach a conclusion that a certain algorithm is generally the best learning al-
gorithm for QoS modelling in the cloud. This indicates that given the generality of the
proposed QoS model, the single learner is limited as it is difficult to determine which
learning algorithm to use without expensive and intensive analysis. In addition, even
when such process is performed, the offline analysis can still become invalid at runtime.
Therefore, it is desirable to build a self-adaptive mechanism that not only able to adap-
tively model the magnitude of selected primitives to the QoS, but also dynamically select

the suitable algorithm based on the runtime trend of a QoS attribute.
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5.5.3 The Adaptive Multi-Learners for QoS Function Training

Give the fact that most machine learning algorithms are self-adaptive and dynamic in na-
ture, the crucial challenge here is how to adaptively determine the best learning algorithm
for QoS function training. To this end, we propose an adaptive multi-learners technique
for updating QoS function on the fly and predicting the QoS values. The technique has
two main processes, namely training and prediction. At the training process, we simulta-
neously apply different learners to train the same QoS function , but each of the learners
uses different learning algorithm to build a model. At the prediction process, we evaluate
these learning algorithms by comparing the resulted models within the bucket on the fly;
the model of the best learning algorithm is used to predict QoS.

One of the most critical design decisions is to determine the evaluation function that
compares the models produced by candidate learners. The basic method would be based
on global mean error of all historical samples. However as shown by Kundu et al. [90],
given a set of primitive values as inputs, the most accurate model using these inputs might
not be the one that has the best global error. This is because the accuracy of a model
can be sensitive to the local construct of given input values, including the variation of
possible combination, scale and granularity, etc. As a result, our evaluation function aims
to compare both the local error of a given inputs set produced by a model and the global
error of the said model. In this work, we have used SMAPE for measuring the error, but
other metrics can be replaced easily.

An algorithmic description of the training process has been shown in Algorithm 2.
At the training process, as the collected online data increases, we continually train two
QoS models for each learner (line 2-5): (i) A main-model that uses 100% of the collected
online data; (ii) A sub-model, which is trained based on 70% of the total collected data.
The sub-model is used to test local and global error for its main-model of a learner. In

particular, it tests the QoS prediction error against the remaining 30% testing data—the
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Algorithm 2 Training process in adaptive multi-learners

Inputs:

given the column entries of SPZ (t) from Algorithm 1 and a set of candidate learning
algorithms

Declare:

<Mma'm7 My, L > - a vector of main-model, sub-model and the corresponding local error
pattern

bucket - a collection of model vectors

Outputs:

a bucket of model vectors for a QoS attribute QoS Zj

1: for each candidate learning algorithm simultaneously do
2: find the optimal number of row entries, i.e., the value of ¢ in (Chapter 4), for
SPZ(t) if it has not been predefined for this learning algorithm

3: train main-model M,,,;, and sub-model M, based on the required inputs
defend by SP{ (1)

4: test the sub-model for building local error pattern L

5: bucket := bucket U <Mma'm7 My, L >

6: end for

split of training and testing data follows standard machine learning approach for testing
generalisation errors. These generalisation errors and their corresponding samples (i.e.,
the observed values of all selected primitives and QoS at each interval) within the testing
data serve as the local error patterns of the main-model. Finally, the main-model, sub-
model and local error patterns are put in a bucket.

An algorithmic description of the prediction process has been shown in Algorithm 3.
The prediction process is triggered when there is need to perform prediction. In particular,
the best main-model in the bucket is used as the final model to predict QoS. To calculate
the local error of a main-model, we leverage on the prediction error of its sub-model for
each sample within the testing data, as recorded in the local error patterns (line 3-9).
When given a set of inputs (i.e., new values of the selected primitives) for predicting QoS,
the local error of a main-model is determined by extrapolating the similarity between the
given set of inputs and each sample from local error patterns; the error of the most similar

sample is used as the local error (line 4-7). To this end, we apply symmetric uncertainty
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Algorithm 3 Prediction process in adaptive multi-learners

Inputs:

given a set of inputs P and the bucket from Algorithm 2
Declare:

S - the current sample

Sselected - the most similar sample to P

d - the distance between P and the current sample
Agmatiest - the smallest distance between P and a sample
Ejocar - the local error of the current main-model

Egiopar - the global error of the current main-model

E - the final error of the current main-model

Eonaniest - the smallest final error of a main-model
Meiecteq - the selected main-model for prediction
Outputs:

the predicted QoS value of Qosg

1: start prediction )
2: for each <Mmam> Mgy, L > in the bucket of QoSY(t) do

3: for each sample S in the local error pattern L of M, do
4: calculate distance d between P and S using

5: if dgnanest >d then

6: dsmallest = d, Sselected =08

7 end if

8: end for

9: get the error of Sijecteq as the local error Ejoeq of My

10: get the global error Egopq of Mpin
11: evaluate final error E of M,,4:, using
12: if Faest >F then

13: Esmallest = E; Mselected = Mmam
14: end if
15: end for

16: predict(P) using the selected main-model Mgejeeted
17: end prediction
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based Euclidean Distance to measure the similarity. As shown in (5.10)), d is the distance

of the given set of inputs against a sample in the local error patterns.

d= > (SU. x (pa —1,)?) (5.10)

rzeX

p. and pl respectively denote the value of zth selected primitive in the given set of inputs
and the value of the same primitive in a sample from local error patterns. SU, is the
symmetric uncertainty value between the zth primitive and the QoS attribute. The sample
results in the smallest d is the one that we are seeking, then its corresponding error is
used as the local error of the main-model (line 9).

On the other hand, the global error of a main-model is the mean errors of all samples
within the 30% testing data produced by its sub-model (line 10). Finally, the evaluation
function selects the best main-model for a given set of inputs by examining on both the
local and global error of all main-models in the bucket, as formally depicted in (13) (line
11-14).

E'=axE,,,+p8xE: (5.11)

global

where E' | B¢ and E*

cal aiobar denote the final, local and global error of the ith main-model

respectively. « and [ are two heuristics expressing the relative importance of local and
global errors. We have set the initial value of o and 8 as 0.1, which means the local and
global error are equally important from the beginning. The selected main-model and its
learning algorithm for a given inputs is the one that has the smallest (line 16).

To capture the right weight of local and global errors, @ and [ are updated via [5.12
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when new data is collected.

a=a+Aa, [=0+A8

(5.12)

t Aa = ea=0p=1 — Ca=1=0  if€a=1=0 < €a=06=1
s.1.

AB = eq=1p=0 — €a=05=1  if €a=15=0 > €a=0p4=1

Specifically, e,—; =9 is the prediction error of new data produced by the selected
main-model when a = 1 and 8 = 0. Similarly, e,—ypg=; is the error produced by the
selected main-model when o = 0 and g = 1. In this way, the error that is more useful
in the selection will gradually gain more importance. This updating process has been

illustrated in Algorithm 4.

Algorithm 4 Update o and 3 in the evaluation function

Inputs:

newly measured values vector Py, and QoS value y for a QoS attribute of selected
primitives QoS ZJ

1: start update when newly data is available

2: predict(Psgmpie) using Algorithm 3 when o =1,5 =0

3: predict(Psgmpie) using Algorithm 3 when o = 0,5 =1

4: calculate the errors of the predicted values from step 2 and 3 against y
5: calculate Ao and AS using

6: update o and 3 using

7: end update

As mentioned in Section [5.5] we employ three different learning algorithms (i.e., AR~
MAX, ANN and RT) in the adaptive multi-learners. Our technique is flexible as new

algorithms can be added or old algorithms can be removed/substituted if needed.
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5.6 Experiments and Evaluations

To evaluate our modelling approach, we experimentally benchmark our results against
other single-learner and manual techniques. Specifically, the primary intention of the

experiments is to validate the approach against the following criteria:

e Accuracy: By comparing with various other state-of-the-art modelling approaches,
we intend to examine whether the hybrid dual-learners and the adaptive multi-

learners can achieve better accuracy.

e Stability: We intend to assess the stability of the accuracy achieved by our ap-
proach under different scenarios, i.e., different QoS attributes and learning algo-

rithms, in contrast to the other competitors.

o Sensitivity of accuracy to online data size: We examine the sensitivity of
accuracy of the proposed approach to the available online data size. The purpose is
to evaluate how quick the model accuracy changes with respect to the increase in

data size.

e QOverhead: We intend to evaluate the overhead of our approach in terms of the la-
tency in the modelling, for both the primitives selection phase and the QoS function

training phase.

In addition to the assessment of accuracy under different QoS attributes and/or learn-
ing algorithms using SMAPE, we also intend to examine the overall accuracy and stability
for all the considered scenarios. However, given the assumption that the scenarios are
equally important, simply calculate the average or sum of all SMAPE can mislead the
results. This is because different QoS attributes produce different scale of the prediction

error, e.g., the error for predicting Throughput tends to be much larger than that for
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Reliability; therefore a technique/learning algorithm that performs better for Through-
put will more likely to dominate the overall results. To cope with this issue, we use the
summation of normalised SMAPE to illustrate the overall accuracy of a competitor, as

shown below:
€;

(5.13)

n

Owerall Accuracy = 100 x Z
; €i,mean

whereby e; is the SMAPE of a competitor for the ith QoS attribute and/or learning

algorithm and e; meqn 15 the mean SMAPE of all competitors under such scenario; n

is the total number of QoS attribute and/or learning algorithm. In this way, the errors

under each scenario are formatted into the same scale where smaller value indicates better

overall accuracy. Similarly, we assess the stability of a competitor via the summation of

normalised distance to the best competitor under each scenario, formally calculated by:

€i — €4 best

Stability = 100 x » (5.14)

€i,worst — €4 best

where €; et and e; yorst are the SMAPE produced by the best and worst competitor
respectively, under the ith QoS attribute and/or learning algorithm. The remaining nota-
tions are the same as[5.13] Again, smaller value indicates better stability across different
scenarios.

The experiments setup is similar to what have been described in of Chapter [4]
In addition, we have considered two types of read /write pattern: a read-intensive pattern
where read to write ratio is around 9:1; and a write-intensive one, i.e., read to write ratio

is around 1:1.

5.6.1 The QoS Attributes, Primitives and Evaluation Procedure

The concrete QoS attributes and primitives depend on scenarios. For the simplicity

of exposition, we have selected commonly used QoS attributes and primitives in the
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Table 5.3: The Examined QoS Attributes and Primitives.

QoS and Primitives Description

Response Time (ms)  The average leap time between a service-instance
receives and replies a request.

Output Throughput (req/min) The average rate of completed requests.
Reliability (%) The percentage of requests that being completed
less than a threshold. (30 ms)
Availability (%) The percentage of time that the average response
time above a threshold. (60 ms)
CPU (%) Observed average CPU utilisation of a VM.
CP input Memory (MB) Observed average Memory utilisation of a VM.

Thread (no. of req)  Observed maximum concurrent threads of a
service-instance. (a modified control knob of Tom-
cat’s mazThread property)

EP input  Workload (req/min)  Observed average request rate of a service-
instance.

evaluation, but it is worth noting that our approach is not limited to these dimensions.
As listed in Table[5.3] these QoS attributes and primitives are per-service except for CPU
and memory as they are shared on a VM. For each service-instance running on a VM of
the master PM, a QoS model can at most has 4 direct primitives (i.e., CPU, memory,
thread and workload of the said service-instance); and 54 indirect primitives, i.e., 2 (thread
and workload)x25 (co-located service-instances)+4 (CPU and memory of another two co-
hosted VMs). This combination gives us a maximum of 58 possible relevant primitives
for each service-instance.

We evaluate the prediction accuracy on the fly; and for each experiment run, we
examine the accuracy of one interval ahead prediction: by the end of interval ¢, the
QoS models are trained based on historical data up to ¢-1 (up to ¢-2 for environmental
primitives), and then we use the observed primitives values at ¢ (at ¢-1 for environmental
primitives) to predict the QoS value at t, which is finally used to compared with the actual
QoS value via SMAPE. The sampling and modelling intervals are both 120 secs with the

total of 500 intervals, where the first 150 intervals use a static and stable workload trend
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aiming at providing some essential data for the modelling; whereas the rear 350 intervals
follow the FIFA98 trend. This setup can generate one new sample per interval for updating
the model. For all accuracy related experiments, we examine the SMAPE for the rear
350 out of 500 intervals in one experiment run; we calculate the mean accuracy of all
service-instances on one VM of the master PM and the reported results are computed by

averaging 10 runs.
5.6.2 Accuracy of Hybrid Dual-Learners for Primitives Selec-
tion

To assess the effectiveness of our hybrid dual-learners technique for primitives selection,
we use various criteria, including accuracy, stability and model complexity. To start with,

we first compare the four variations of our hybrid dual-learners technique, these are:

HYBRID-V1 - using (5.8) for mR and ([5.4) for mRMR.

HYBRID-V2 - using (5.8) for mR and ([5.5)) for mRMR.

HYBRID-V3 - using (5.8) for mR and ([5.6) for mRMR.

HYBRID-V4 - using (5.8)) for mR and (5.7)) for mRMR.

We report the results by following the evaluation procedure described in Section [5.6.1}
For all cases, we apply three widely used learning algorithms (i.e., ANN, ARMAX and
RT) for QoS function training on all the QoS attributes.

Figure[5.4] [5.5]and [5.6]illustrate the results for the overall accuracy, stability and model
complexity under two different workload patterns. We can see that for both workload
patterns, HYBRID-V1 tends to produce the best accuracy overall, but it has marginal
difference to HYBRID-V3 on the write-intensive pattern. As for stability, it is clear that

the HYBRID-V1 achieves the best results. We observed that all four variations produce
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Table 5.4: The Detailed SMAPE (%) Results of Hybrid Variations for Primitives Selection.
(the best is highlighted in bold)

Write-intensive workload

Hybrid-vl Hybrid-v2 Hybrid-v3 Hybrid-v4

ANN 12.28 12.8 12.81 12.48
Response Time ARMAX 29.61 30.56 29.84 36.59
RT 16.31 18.1 16.39 16.37
ANN 11.93 12.29 12.67 13.59
Throughput ARMAX 13.35 13.55 14.02 15.12
RT 21.89 21.8 21.14 24.2

ANN 0.21 0.21 0.21 0.2

Reliability ARMAX 0.03 0.03 0.03 0.03
RT 0.28 0.26 0.29 0.27

ANN 0.37 0.36 0.36 0.43

Availability ARMAX 0.03 0.02 0.03 0.03
RT 0.43 0.45 0.41 0.55

Read-intensive workload

ANN 13.51 15.44 15.14 15.35
Response Time ARMAX 44.85 45.62 44.36 45.68
RT 17.42 21.19 20.26 21.58
ANN 13.75 15.73 15.84 15.55

Throughput ARMAX 15.02 17.91 17.99 17.9
RT 22.07 24.74 25.87 26.22

ANN 0.32 0.42 0.44 0.44

Reliability ARMAX 0.03 0.04 0.05 0.04
RT 0.38 0.3 0.43 0.33

ANN 0.61 0.69 0.7 0.7

Availability ARMAX 0.05 0.06 0.06 0.06
RT 0.68 0.64 0.63 0.65

the same model complexity. Table shows the detailed accuracy results under each
of the 12 scenarios. For both workload patterns, HYBRID-V1 produces the best results
for most of the cases on Response Time and Throughput; whereas for other two QoS
attributes, the best variation tends to be different.

Next, we use HYBRID-V1 (we refer to as HYBRID for simplicity), as the representa-

tive of our hybrid dual-learner technique, to compare against various other self-adaptive
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and online selection techniques that are categorised as single-learner based; and the man-
ual selection technique that has been widely used in existing static and semi-dynamic QoS

modelling approaches (e.g., [00] [107]). They are explained as the following:

e HYBRID - using (5.8) for mR and ([5.4)) for mRMR.
e SINGLE-MR - using (/5.8]) for mR.
e SINGLE-MRMR - using (5.4)) for mRMR.

e MANUAL - fixed and offline selection that statically uses certain primitives (CPU
and memory in our case) as inputs e.g., [90] [107] - we modified the model from

per-VM to per-service.

e SINGLE-MR-DIRECT - using (j5.8)) for mR and consider direct primitives only.

Figure shows the overall accuracy for the write-intensive and read-intensive work-
load patterns respectively. From Figure [5.7h, we can see that our HYBRID produces the
best accuracy overall. Specifically, in contrast to those single-learner based techniques,
HYBRID has better overall accuracy than that of SINGLE-MR-DIRECT because it con-
siders extra information about interference in the modelling, which tends to be important
for improving accuracy. In addition, it is also overall more accurate than SINGLE-MR and
SINGLE-MRMR, because it is capable to select useful primitives based on both relevance
and redundancy while still prevent misleading the selection process. This is achieved
by partitioning the possible relevance primitives space. We have also observed that, a
carefully designed self-aware, self-adaptive and online selection technique can generally
lead to better accuracy than the manual selection; however an inappropriate one (i.e., the
SINGLE-MR) might make the accuracy worse off.

As for the read-intensive pattern (Figure ), SINGLE-MR and SINGLE-MRMR

are less accurate than SINGLE-MR-DIRECT; they are even much worse than the manual
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Figure 5.9: The Complexity for Each Primitives Selection Technique.

technique. This implies that the rich redundancy and the misleading selection cause more
serious issues as when compared to write-intensive pattern. For our HYBRID technique,
we can note that it again achieves the best accuracy overall, which is a consistent result
on both workload patterns.

Figure [5.8| shows the stability of the techniques; it is easy to see that our HYBRID
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Table 5.5: The Detailed SMAPE (%) Results of Techniques for Primitives Selection. (the
best is highlighted in bold)

Write-intensive workload

Hybrid Single-mR SinglemRMR Manual Single-mR-

direct
ANN  12.28 16.12 13.03 17.8 12.92
Response Time ARMAX 29.61 37.56 29.77 33.81 32.36
RT 16.31 19.74 15.4 19.25 17.91
ANN  11.93 13.45 16.82 14.26 12.55
Throughput ARMAX 13.35 15.29 17.53 14.17 13.6
RT 21.89 23.52 23.17 19.88 19.94
ANN 0.21 0.55 0.35 0.16 0.17
Reliability ~ ARMAX 0.03 0.05 0.02 0.02 0.02
RT 0.28 0.29 0.24 0.35 0.37
ANN 0.37 0.39 0.34 0.36 0.36
Availability ARMAX 0.03 0.04 0.02 0.03 0.02
RT 0.43 0.43 0.43 0.55 0.56

Read-intensive workload
ANN  13.51 15.9 21.84 30.73 15.49
Response Time ARMAX 44.85 51.44 56.47 53.46 48.52
RT 17.42 20.21 20.01 21.09 20.73
ANN  13.75 16.59 30.18 18.56 15.75
Throughput ARMAX 15.02 17.04 17.31 17.87 17.66
RT 22.07 24.4 30.79 25.81 24.51
ANN 0.32 1.2 0.45 0.36 0.55
Reliability ~ ARMAX 0.03 0.04 0.05 0.06 0.06
RT 0.38 0.59 0.57 0.37 0.45
ANN 0.61 0.78 0.65 0.68 0.72
Availability ARMAX 0.05 0.07 0.03 0.05 0.05
RT 0.68 0.64 1.32 0.83 0.77

technique produces the best result for both workload patterns, meaning that it is the most
robust one under different scenarios. As for complexity (Figure , the HYBRID can be
slightly more complex than the others, except for SINGLE-MR. However, the benefit here
is that the model’s overall accuracy is better and more stable than others with respect to
the QoS attributes and the learning algorithms.

Table [5.5 shows the detailed accuracy results for each of the 12 scenarios. Again, we
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can see that for both workload patterns, the HYBRID produces the best results for most of
the cases on Response Time and Throughput, which are highly fluctuate; but the best for
Reliability and Availability tend to vary. This is because the Reliability and Availability
trends tend to fluctuate less than that of Response Time and Throughput. Therefore, the
sensitivity of certain learning algorithms to the number of inputs are amplified; this can
easily lead to over-fitting when the model complexity increases, which will significantly
influence the model accuracy. However for Reliability and Availability, the differences
of accuracy between HYBRID and the best one ranges from 0.01% to 0.05%, which is
marginal as when compared to the improvement that HYBRID offers.

According to all these results, we can conclude that although HYBRID does not
constantly produce the best accuracy for every learning algorithms and QoS attributes, it
tends to produce the best overall accuracy; it is also the most robust and stable technique
in the presence of variability introduced by different learning algorithms and QoS trends.
In particular, HYBRID provides better accuracy when QoS fluctuates, while leaving the
model complexity adequate. It is also worth noting that having a self-aware, self-adaptive
and online primitives selection process promotes numerous other benefits, e.g., reduce the
needs for complex human analysis and can be easily adapted to many learning algorithms

etc.

5.6.3 Accuracy of Adaptive Multi-Learners for QoS Function
Training

To evaluate our adaptive multi-learners technique (denoted as ADAPTIVE) for QoS func-

tion training, we follow the evaluation procedure described in Section For different

QoS attributes, we compare the accuracy and stability of ADAPTIVE with that of the

other online learning algorithms that assume single learner (i.e., ANN, ARMAX and RT),

which has been widely studied in existing semi-dynamic QoS modelling approaches e.g.,
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[90] [107]. In all the cases, we have used HYBRID for primitives selection.

Figure [5.10] and [5.11] show the overall accuracy and stability results under the two

considered workload patterns. We can clearly see that ADAPTIVE produces the best
accuracy overall for both workload patterns. It is also the most stable and robust against
different QoS attributes. Detailed accuracy results for each of the 4 scenarios has been
shown on Table [5.6 Here, we observe similar results on both workload patterns: for
Response Time and Throughput, the ANN is the best learning algorithm in contrast to
ARMAX and RT; We can see that ADAPTIVE is also much better than ARMAX and
RT, but being slightly worse than ANN. These results indicate that although the ADAP-
TIVE might occasionally produce false positive/negative for selecting the best learning
algorithm, it is still able to produce very closed accuracy to the best learning algorithm
for a QoS attribute. In cases of Reliability and Availability, we can see that the ADAP-
TIVE is able to produce the same prediction error as the best learning algorithm, which
is ARMAX. This result means that, through the inclusion of meta-self-awareness, the
ADAPTIVE successfully determines the best learning algorithm along the QoS trend.
In summary, we can note that although the algorithms behave differently depends on
different QoS trends, our adaptive technique can still continually select the suited one
to predict QoS and result in good accuracy; it is also the most stable on different QoS
trends. Moreover, our self-aware, self-adaptive and online solution eliminates the need
of heavy human intervention for identifying the suitable learning algorithm, and hence

reduce the errors that can be introduced by human analysis.

5.6.4 Detailed Accuracy

Figure and illustrate examples of the actual and predicted QoS values for all the
considered QoS attributes. Due to limited space, we have used an instance of the service

named SEARCHITEMBYCATEGORY as the example. We can see that the prediction of the
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Figure 5.11: The Stability for Each Learning Algorithm.

Table 5.6: The Detailed SMAPE (%) Results of Learning Algorithms for QoS Function

Training. (the best is highlighted in bold)

Write-intensive workload

Adaptive

ANN ARMAX RT

Response Time 13.72 12.28 29.61 16.31
Throughput 12.72 11.93 13.35  21.89
Reliability 0.03 0.21 0.03 0.28
Availability 0.03 0.37 0.03 0.43

Read-intensive workload

Response Time 13.82 13.51 4485  17.42
Throughput 14.16 13.75 15.02  22.07
Reliability 0.03 0.32 0.03 0.38
Availability 0.05 0.61 0.05 0.68
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hybrid and adaptive multi-learners approach diverts from the actual QoS scale at some
early peak points, e.g., the 30th interval for throughput. We believe that such inaccuracy
is due to the applied FIFA98 trend has limited seasonality, thus the modelling approach
can frequently encounter 'new behaviours’ of the services at peak points, especially during
the early stages of fluctuated trend. However, the figure clearly shows that the multi-
learners approach is able to quickly evolve itself and detect most of the change-points in
the remaining trend, given that the subsequent predictions are good even for the peak

and trough.

5.6.5 Sensitivity of Accuracy to Online Data Size

Next, we evaluate the sensitivity of accuracy to the online data size for our approach. This
sensitivity expresses how quick accuracy changes as the available data samples increase.
Specifically, we split the data size of the entire 350 intervals into the following portions
based on the order of time series: 20%, 40%, 60%, 80% and 100%. In the following,
we report on the results for the write-intensive pattern. Similar observation has been
registered for the read-intensive workload pattern.

Figure [5.14] shows the sensitivity of accuracy to data size for the HYBRID and other
single learner-based and manual selection techniques. We note that all primitives selection
techniques lead to better accuracy as the data size increases, given the fact that all selected
primitives are more or less relevant to the QoS. In most of the cases, the sensitivity of
model accuracy to data size has been similar for all the primitives selection techniques. In
addition, the comparative accuracy under limited data do not differ much as to what had
been reported in Section . However we found that in certain cases (e.g, Figure
and ), particularly for fluctuated QoS trends, the accuracy produced by HYBRID
clearly has the greatest sensitivity to data size; or being more sensitive than most of

the other selection techniques. We also discovered that in these cases, HYBRID tends
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Figure 5.14: Sensitivity of Model Accuracy to Online Data Size for Each Primitives
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Figure 5.15: Sensitivity of Model Accuracy to Online Data Size for Each Learning Algo-
rithm. The y-axis is SMAPE (%); x-axis is the online data size (%).

to produce better or similar accuracy in contrast to the other selection techniques, even
when the data size is limited. These observations imply that, in contrast to the other
approaches, HYBRID can still further improve the accuracy quicker as the data samples
increase, while maintaining relatively less or similar error under limited data size.
Figure [5.15]illustrates the sensitivity of accuracy to data size for the ADAPTIVE and
other single learner-based learning algorithms. Again, all learning algorithms gradually
improve on accuracy as the data size increase. The sensitivity of ADAPTIVE has been
similar to most of the others for Response Time and Reliability (i.e., Figure and
5.15k). However, for Throughput and Availability (i.e., Figure 5.15b and [5.15d), our
ADAPTIVE and the best learning algorithms (i.e., ANN and ARMAX) tends to improve
accuracy slightly quicker than the others while maintaining relatively less error under
limited data size. We can also observe that, in contrast to the corresponding best single
learning algorithm for each QoS attribute, the accuracy of our ADAPTIVE has the same

or similar sensitivity to the online data size.

5.6.6 Overhead

To assess the overhead of our approach, we compare the latency of HYBRID to other
single learner-based techniques, which has been considered in the experiments for prim-

itives selection; we also examine the latency of ADAPTIVE to that of ANN, ARMAX
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and RT for QoS function training. Because the latency can be varied depends on the
characteristics of the service and data size, we have used an instance of the service named
SEARCHITEMBYCATEGORY as the example given that it exhibits the most fluctuated
workload. The experiments are performed using the rear 10 out of 500 intervals and we
report on the average results of all QoS attributes over 10 runs.

Figure [5.16| shows the performance overhead for different primitives selection tech-
niques. We can see that under both workload patterns, the HYBRID (0.68s and 0.65s) has
relatively bigger overhead as when compared to SINGLE-MR and SINGLE-MR-DIRECT;,
but it is smaller to that of SINGLE-MRMR. We have observed that this is due to the
majority of overhead is caused by the optimisation process in which is not part of
the process in SINGLE-MR and SINGLE-MR-DIRECT. However, such extra overhead of
HYBRID is generally acceptable as it is still less than 1 sec. For the case of QoS function
training, Figure [5.17] illustrates the best and worst cases for all learning algorithms. In
particular, for both patterns, ANN generally produces bigger overhead as when compared
to ARMAX and RT. This is because the ANN is fundamentally more complex than the
other two. For both the best and worst cases, the ADAPTIVE has relatively similar over-
head to that of ANN; this is expected as the ADAPTIVE needs to wait for the completion
of all simultaneously running learning algorithms before determine the best one to use.
In conclusion, the overhead of our modelling approach is acceptable under the sampling

and modelling interval of 120s, and thus it is efficient enough to be performed online.

5.7 Conclusion

In this chapter, we proposed an improved approach for QoS modelling in the cloud. To
tackle the dynamics and uncertainties related to QoS sensitivity and interference, we use
hybrid dual-learners technique for primitives selection. We have presented a detailed

study on how the relevance and redundancy of selected primitives influences the model
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accuracy, which drives our designs. On the other hand, we have showed that different
learning algorithms perform significantly different depends on QoS attributes and their
fluctuations. Therefore, we use an adaptive multi-Learners technique for QoS function
training. In this way, we aim to dynamically select the best learning algorithms at runtime.
All these dual- and multi-learners, as well as the related techniques are the foundations
to enable better self-awareness for QoS modelling in the cloud. The experiment results
suggest that, in contrast to state-of-the-art QoS modelings, our approach produces better
overall accuracy while having acceptable overhead; and it is more stable against the
variability introduced by different scenarios. More importantly, the proposed approach
eliminates the need for heavy human intervention, which can be complex and error-prone.

The implication of QoS modelling and its dynamic analysis to intelligent adaptation in
the cloud are vast: the model can assist autonomic software agents in predicting causes of
probable risks leading to QoS violations; reasoning about appropriate mitigation strategies
and/or even planning for optimal QoS design and online adaptation strategies. Moreover,
it can assist problems related to QoS self-management, self-adaptation, resource utilisation
and elastic autoscaling.

We have explored the proposed algorithms and techniques for realising self-awareness
in the QoS Modeller component. In the following chapters, we will qualitatively and
quantitatively demonstrate how the resulted QoS models can be used in the other two
important logical aspects (i.e., determining granularity of control and trade-off decision

making ) of autoscaling in the cloud; and what are the benefits of these models.
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CHAPTER 6
SELF-AWARE AND SELF-ADAPTIVE
APPROACH FOR DETERMINING
(GRANULARITY OF CONTROL IN CLOUD

AUTOSCALING

6.1 Introduction

An effective autoscaling system should be global-benefit optimised, with an attempt to
optimise both QoS and the required rental cost. The optimal benefit refer to the optimum
performance of all QoS attributes with minimal costs for a cloud-based service. If each
service in a cloud reaches its optimal benefit, then cloud is said to reach globally-optimal
benefit. Achieve globally-optimal benefit in the cloud leads to a win-win situation: the
owners of cloud-based services gain better QoS with less rental cost. On the other hand,
the cloud provider could better utilise resources and earns better reputation.

The global benefit objective consists of various QoS and cost objectives. In this thesis,

we use objectives to refer to various QoS and cost objectives of a cloud-based service.
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When making autoscaling decisions in the cloud, the objectives, which we aim to optimise
for, can be either conflicting or harmonic due to the presence of overlapping sensitivity
(e.g., being sensitive to at least one identical primitive) amongst different QoS attributes
and costs; this is referred to as objective-dependency. By sensitivity, we refer to
the correlation between the fluctuation of QoS/cost to the stimuli caused by changing
primitives. Typically, the cost is based on a fixed model and sensitivity. On the other
hand, as we have already discussed in Chapter [] and [5, QoS models and their sensitivity
are generally dynamic (i.e., which, when and how primitives correlate with QoS tends
to be dynamic). The objective-dependency could be either intra- or inter-service. Intra-
service dependency refers to objectives, which are dependent in nature. This, for example,
can be rental cost and throughput of a cloud-based service. The inter-services dependency
means the objectives of two services could be dependent on each other because of QoS
interference caused by the co-located services on the VM [112] (as resources contention
on a VM) and the co-hosted VMs on a PM [I16] (as resources contention on a PM).
In addition, the loosely coupled nature of cloud-based services implies that dependency
might exist between QoS/cost objectives of the services on different PMs, as they are

functionally dependent on the same service.

6.1.1 Motivation and Challenges

Undoubtedly, objective-dependency has great impact on the achieved global benefits.
Therefore, reaching the right granularity of control during the decision making process
of autoscaling is extremely important as it needs to cope with the correct objective-
dependency. By granularity of control, we refer to which objectives should be considered
in the same decision making process for optimisation in the autoscaling. Nevertheless,
determining the right granularity of control in autoscaling is a major challenge. One one

hand, local optimisation of objectives (e.g., optimise objectives per-VM) might not opti-
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mise the global benefit due to the presence of objective-dependency caused by overlapping
sensitivity. On the other hand, a global optimisation in the cloud is likely to result in
large overhead in searching for an autoscaling decision. As a result, there is a trade-offs
between global benefit and overhead in the design. In particular, the difficulty is that
the objective-dependency tends to dynamic and uncertain in nature. It becomes even
harder providing that the QoS models are subject to dynamic changes in their inputs, as
we discussed in Chapter 4l The crucial challenge is how can we obtain the correct in-
formation about the time-varying objective-dependency, which can be used to determine
the effect of a given granularity of control on the global benefits and thus reach the right
granularity.

As we have extensively surveyed in Chapter |2, a common problem in existing autoscal-
ing approaches for the cloud is that they are not designed to be self-aware with respect
to the dependency of QoS and cost objectives for all cloud-based services. Precisely, they
cluster the cloud into fixed regions and granularity of control; optimise for QoS and cost
objectives and aggregate the results in each region. For example, existing autoscaling
approaches aim at either global optimum in one global region (e.g., cloud-level control)
or local optimum in different local regions (e.g., PM-level, VM-level and service-level con-
trol) asynchronously and independently. Both solutions ignore QoS and cost sensitivity
as their decision making assumes fixed region granularity. Given that the cloud tends to
be dynamic and its QoS sensitivity changes at runtime, these approaches can result in
inappropriate clustering of regions, which can lead to non-optimal global benefit or large
overhead when optimising for the said regions. Both global benefit and the overhead are
sensitive to the number of services and their objectives in the decision making process.
Therefore, the trade-offs between global benefit and overhead is influenced by the region
granularity. Consider now a complicated scenario, where the region granularity is linear

to both global benefit and overhead in a given optimisation algorithm: Figure shows
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Figure 6.1: Approximated Relationship of Fixed Region Granularities to Global Benefit
and Overhead in Cloud.

the likely trend of different fixed region granularities in relation to the global benefit and
overhead. Based on the degree of granularity of control in decision making, we classify
the approaches for cloud autoscaling into 4 categories, as shown in Figure [6.1] We can
see that finer region granularity implies less number of services and the related objectives
within each region. This tends to result in worse global benefit but smaller overhead.
Consequently, achieving globally-optimal benefit in the cloud call for novel and adap-
tive approach that is capable to dynamically determine the right granularity of control

on-the-fly.

6.1.2 Contributions

The problem, which this chapter addresses is how the autoscaling system can dynamically
and efficiently determine an autoscaling decision that produces globally-optimal benefit.
To achieve such, we propose a self-aware and self-adaptive approach for determining the
right granularity of control, which exploits on the QoS modelling approach from Chapter [4]
and [5] Through the awareness of the sensitivity and dependency amongst objectives, this
approach can assist the autoscaling process in efficiently produce globally-optimal benefit
with reduced overhead. The novelty is that QoS and cost objectives of cloud-based services

are dynamically clustered into independent regions where any objectives of a region are
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independent to those of the other regions, as a result each region can be optimised locally.
In particular, we dynamically determine the level of region granularity on-the-fly. This
mechanism is the key enabler of realising self-awareness for determining granularity of
control. Here, self-awareness provide us with seamless and dynamic clustering of the
regions for QoS and cost objectives. To the best of our knowledge, we are the first to
consider dynamic granularity of control for autoscaling in the cloud, therefore the proposed
approach in this chapter can be seen as a contribution to the fundamentals of elasticity in
the cloud enabled by autoscaling. The experiment results reveal that our self-aware and
self-adaptive approach is able to produce similar global benefit to the PM-level control,
and better than cloud-level, VM-level and service-level controls. On the other hand, it
produces smaller overhead than the cloud-level and the PM-level controls; and could be
similar to that of the service-level and the VM-level ones. In particular, the achieved
global benefit and overhead in our approach tends to be better when it is possible to have

more independent regions.

6.2 Problem Analysis and Models

We adopt the same cloud system model, assumptions and the generic QoS model as de-
scribed in Chapter |4l In addition, we do not consider global resources contention caused
by shortage in cloud capacity; our approach works for cases where software and hard-
ware resources tend to be available, which is normal in a cloud environment. Henceforth,
we assume that the maximum demand of software and hardware resources for all cloud
service-instances (e.g., according to their budget) should be satisfied by the capability of
the cloud provider. Under such assumption, we eliminate extreme cases where the ca-
pacity of cloud provider reaches its limits causing likely global resources contention. This
is because the increasing demand of each service-instance would eventually be satisfied

by scale up/out as long as the cost does not exceed the budget. We believe this is a
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reasonable assumption as in realistic scenarios, proper admission control can be applied
to restrict the number of cloud-based service-instances. Moreover, in case where the cloud
provider actually encounters capacity shortage, the unsatisfied services can be switched
to an alternative provider via a cloud selection mechanism, which presumably hold our
assumption. However, the design of admission control and selection mechanism is outside

the scope of this thesis.

6.2.1 Cost and Objective Models

In the context of cloud, utilising control primitives will incur monetary cost, therefore the

total costs model for S;; can be represented by the following objective function:

Cost” = Z CPY(t) x P, (6.1)

a=1

where n is the total number of control primitive type that used by service-instance S;; to
supports its QoS attributes. CP?(t) is the provision of the ath control primitive for Sij
at interval t. P, denotes the corresponding price per unit of the ath control primitive. In
this work, we assume that the price of each control primitive type is fixed for all service
owners and their service-instances. Given that there can be multiple service-instances
running on a VM; while the hardware control primitives (e.g., CPU and memory) can be
only provisioned for each VM, we redefine their provision prices to make them suitable
for the cost model at the service level.

To achieve globally-optimal benefit in elastic cloud, our approach aims at adaptively
and dynamically determine and scale to the configured values of related control primitives,
which supports the best of all QoS attributes in Chapter [4]) with minimal costs
for all service-instances in the cloud. In this chapter, we apply a linear weighted-sum
aggregation to express the global benefit for QoS attributes and costs of different service-

instances in the cloud. Formally, at any given interval ¢, we aim to optimise the global
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objective by maximising the function in [6.2

T

n m l
Z Z w - (Z w, - QoSY(t) — Z wy - QoSY (t) — wyry1) - Cost?) (6.2)

i=1 j=1 b

where n and m are the total number of services and their instances in the cloud re-

spectively; wi;

is the weight for each service-instance. Because the global objective is to
maximise (6.2), we need to carefully place the maximised QoS (e.g., throughput) and the
minimised ones (e.g., response time); thus [ and r are the total number of the maximised
and minimised QoS for S;; respectively; w,, wy and w(;4.,4;) are refer to the corresponding
weight of the QoS and cost for S;;. In addition, the optimisation of should be subject
to the constraint of budget and SLA.

It is worth noting that the purpose of the approach in this chapter is not to find out the
best formalisation of the global benefit and its optimisation algorithms; but to evaluate
the effectiveness of our self-aware and self-adaptive approach in handling the granularity

of control towards reaching globally-optimal benefit. In the next chapter, we will look at

more sophisticated formalisation (e.g., removal of the weights) of the global benefit.

6.3 Designing Self~-Aware and Self-Adaptive Granu-

larity of Control

Recall that our objective is to optimise the global benefit for QoS attributes and costs of all
service-instances. Therefore, from a logical point of view, our basic problem entity in the
cloud are different objectives, i.e., to maximise/minimise QoS and to minimise cost
, for different service-instances. The objective functions of these objectives are their
corresponding QoS/cost models, the kth objective of S;; is denoted by O,ij . In particular,
we argue that any two objectives are either dependent (i.e., conflicted or harmonic) or

independent (i.e., an objective is neither directly/transitively conflicted nor harmonic with
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another). With this in mind, we propose a two-phases region clustering, where the first
phase clusters the objectives into different independent super-region, which defines the
boundary of likely independent objectives for the entire cloud under current deployment.
The purpose of super-region is to classify those objectives, which might be independent
for now but could become dependent to the others as the QoS sensitivity changes. In
other words, the objectives should be clustered into the same super-region as long as
they are likely to have objectives-dependency. In the second phase, the objectives within
each super-region are further clustered into smaller independent regions where the local
optimisation and decision making takes place. By independent regions, we refer to the
case where any objective from a region is currently independent to any objective from
another region at given time. By doing so, the search space of the global objective function
in is clustered into n subspaces based on sensitivity, where n is equivalent to the
number of regions. The aggregate objective of each subspace (still can be expressed by
, but with smaller search space) is optimised independently and asynchronously.

The basic principle behind our approach is that, we can reach a globally-optimal ben-
efit by asynchronously doing local optimisation and decision making for locally-optimal
benefit within different independent regions, which have smaller search space. The cluster-
ing of super-region and their regions is a dynamic online process based on the deployment
and sensitivity respectively, which are expressed by rules (we will describe in Section m
and .

In the following, we use SR; to denote the ith super-region and R} to denote the kth

region of the ith super-region. The clustering should follow the constraints below:

Constraint 6.1. YO* € (R. N R]) =0 O
Constraint 6.2. if(30Y € SRy,) and (30 € SR,), then SRy = SR, O

Constraint means that each objective can at most belongs to one region within

a super-region. Constraint indicates that all objectives of a service-instance should
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Figure 6.2: Overview of the Notion of Super-Region and Region.

belong to an identical super-region. However, these objectives might belong to different
regions within such super-region. The logical view of our two-phases region principle in
the cloud is shown in Figure [6.2] where we assume a simple scenario consists of 3 PMs, 4
VMs and 6 service-instances with various QoS/cost objectives. The two solid (red) cycles
represent two super-regions. Different colours on the objective entities express different
regions within those two super-regions. In addition, there is a functional dependency
between S;; and Ss;, which means that S;; requires the invocation of Ss; to complete its

service.

6.3.1 Super-Regions

Objectives in the entire cloud can be clustered into different super-regions. Each of the
super-region contains the objectives of service-instances that are likely to be directly or
transitively dependent. The clustering rule of super-regions is specified as:

Rule 6.1. Given Sup, Sca and YO from SRy, then the jth objective of Sa (i.c., O;”b)
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belongs to SRy, if:
1. Su and Seq are deployed on the same VM/PM, or
2. Sap has direct functional dependency on S.q, or

3. Seq has direct functional dependency on Sgy.

Rule assumes arbitrary service-instances Sg, and S.4. It also assume that the
objectives of S.4 are in the super-region SR;. Under these assumptions, objectives of Sy
are said to belong to SRy if and only if it follows any of the above three conditions (either
directly or transitively).

Consider the scenario in Figure 3 as an example. The objectives on PM1 are assigned
to the same super-region because they satisfy condition 1 in Rule [6.1l On the other
hand, the objectives on PM2 and PM3 form another super-region as they satisfy all the
conditions. In particular, the objectives of Si5 and S3; are within the same super-region
even they do not directly satisfy any of the conditions. This is because Sy; functionally
depends on Ss31, thus they satisfy condition 2. In addition, S4; and S5 satisfy condition
1. As a result, the Si2 and Ss3; transitively satisfy the conditions in Rule [6.1] via Sy;.

Given the assumption that shortage in cloud capacity is beyond our concerns, the
cluster rule of super-regions are designed based on the fact that the objectives of a service-
instance and its functionally dependent service-instances are very likely be dependent
under some scenarios (e.g., sequential interaction). In addition, the likely QoS interference
can only be caused by the co-located service-instances on a VM and the co-hosted VMs
on a PM. Therefore, the objectives from any service-instances that do not directly or
transitively satisfy Rule can be optimised independently as they would have no way
to influence each others.

The clustering of super-region could change at runtime due to the dynamic cloud envi-

ronment. The super-regions would be re-clustered according to Rule upon deployment
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changes, for examples, VM migration/replication, PM boots-up/shutdown and changes

in service compositions etc.

6.3.2 Regions

Within each super-region, we further cluster the objectives into different independent
regions, where a local optimisation algorithm is running. The clustering of regions could
be triggered upon symptoms described in Section [6.3.3] The aim is to further narrow
down the number of dependent objectives according to their current sensitivity at a given
time. Therefore, the cluster Rule [6.2] of regions are designed based on the sensitivity of

QoS and cost models:

Rule 6.2. Within a super-region SR, given O and any O;lb from RL, then O$* should
also belong to RL if O has inputs in common to O;‘b and these inputs are parts of the

final autoscaling decision, i.e., the control primitives. O

Concretely, Rule expresses that an objective should belongs to a region R! if and
only if it has at least one identical primitive input to one or more objectives from R}
(meaning that they are dependent and have overlapping sensitivity). If two objectives
have neither the common inputs, which are parts of the final autoscaling decision, nor
common inputs to the same intermediate objectives, they are said to be independent
during optimisation and decision making.

Using the scenario in Figure [6.2] as an example. There are two regions within the left
super-region; this is because the objectives of Si1, S9; and Sy use certain identical control
primitives inputs. On the other hand, the objectives of S35 is in an alternative region
because it is insensitive to and has no identical inputs to any of those objectives from Si;
and Sy; as it suffers limited QoS interference on the co-located services. In particular,
suppose that 0! has identical inputs to O’ and O}' ; O} and O7' do not directly

satisfy Rule 2. However, all of these 3 objectives are put in the same region because
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OH and 07! are transitively satisfy Rule 2 via O}!. Similar scenario occurs in the right
super-region. In addition, we can see that even 07, OJ' and 03! are objectives of the
same service-instance, 03! is put in an alternative region to that of O and O3’ . This
is a possible scenario: suppose that 03! is cost objective, Of' and 03! are throughput
and consistency QoS objective respectively; it is likely that OF is only sensitive to an
unique control primitive (e.g., ordering error), which is free of charge and henceforth, it
is independent on 07! and O3 .

Similar to the super-regions, the clusters of regions are also subject to dynamic
changes. However, region portioning is likely to change more frequently than that of
the super-region. This is because it requires updates when changes in QoS sensitivity
tend to be significant. Examples of significant QoS sensitivity changes could include sce-
narios, where QoS is becoming sensitive to a new primitive or insensitive to an existing
primitive. Insignificant changes on how the primitives correlate with QoS cannot trigger

re-clustering of the regions.

6.3.3 The Workflow

The physical deployment of our approach is shown in Figure As we can see the
architecture is deployed as decentralised instances, each of which running on a separate
VM (e.g., Dom0 on Xen [6]) on every PM in the cloud. For our autoscaling framework,
the contributions of this chapter realise self-awareness in the internal self component,
namely Region Controller. In particular, self-awareness in Region Controller is mainly
concerned with knowing objective dependency and the effects of control granularity to
the global benefit. Table shows the mapping between the sub-components of Region
Controller and the self-awareness capabilities. In such way, self-awareness permits better
self-adaptivity, not only at the local level of the region controlling process, but also at

the global level of the autoscaling process. In the following, we explain the workflow and
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Table 6.1: The Mapping Between Self-Awareness Capabilities and the Sub-Components
for Determining Granularity of Control in Cloud Autoscaling.

Self- Component Description
Awareness
Capability
Interaction- | Super Region | Knowing how the region controlling process can be
awareness Cluster and | affected by the objective dependency.

Region Cluster
Goal- Region Cluster | Knowing how the region controlling process can be
awareness affected by the QoS and cost models.
Self- Super Region | Self-adapting its regions and their content.
expression Cluster and

Region Cluster

Y 1211 ()
Lo y Region Controller y
Super Region Cluster » Region Cluster : .
B g el
: 2 {  Decision Maker : 5
' QoS Modeller ' ! P ]
' : | Region | --- | Region |«
: 1 S T LIETr e ' 16
: X s :
Sensor Actuator :

VM VM A e VM

Figure 6.3: Overview of the Architecture for Dynamically Determining Granularity of
Control in Autoscaling.

those sub-components in greater details.
The workflow of our approach has also been demonstrated in Figure [6.3] More pre-
cisely, the sensor on each PM collects the data (e.g., QoS values, usages of control prim-

itives and values of environmental primitives) from the underlying VMs and service-
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instances; and possibly from other PMs due to functional dependency. In addition, the
Sensor could sense deployment changes and QoS sensitivity changes from other PMs.
Next in step 1, the Sensor normalises all the raw information. Once the QoS Modeller re-
ceives both current and historical data after normalisation, this data is then used to build
QoS models. At step 2, the QoS models, cost models and the related detected changes
are transiting to the Region Controller, which realises the region controlling approach
proposed in this chapter. The clustering of super-region /region and/or adaptation can be

triggered if one or more of the following symptoms is detected:

e Symptoms 1: Proactively detect if the QoS of a service-instance is likely to violate

SLA constraint by using the QoS models.

e Symptoms 2: Reactively detect if the QoS of a service-instance has violated its SLA

constraint and /or if the utilisation of a control primitive has violated the constraint.

e Symptoms 3: Significant changes in the QoS sensitivity of the objectives in a man-

aged region.
e Symptoms 4: Deployment changes occur in a managed super-region.

Symptoms 1 and 2 would trigger the elastic autoscaling of the managed service-
instance(s); whereas, symptoms 3 and 4 require the approach to adapt itself by re-
clustering the super-regions and/or regions. In particular, to prevent the problem of
triggering elastic adaptation too frequently, symptoms 1 and 2 are valid only if the leap
time after the previous adaptation for the affected service-instances is more than a thresh-
old t. Once we reach the Region Controller component, the changes in symptoms 3 and 4
would be addressed separately in a hierarchical stack. Concretely, Super-Region Cluster
component manages symptom 4 and maintains the super-region on to its PM as only one
super-region exists on a PM according to Rule 1. In the lower stack, Region Cluster com-

ponent manages the regions within the aforementioned super-region (step 3) according to

177



Rule 2; it aims to cope with symptom 3. Additionally, it could be triggered by symptom
4 as the cluster of a super-region might change. Once both symptoms 3 and/or 4 are re-
solved, the propagation goes to the the Decision Maker component within each region is
designed to address symptoms 1 and 2. This can be done through dynamically searching
the best adaptation strategies toward the locally-optimal benefit of region, using the QoS
and cost models (step 4). In particular, the Decision Maker is triggered independently
and asynchronously for each region. Given that functional dependency might exist for
service-instances form different PMs, there are cases where a region can be associated
with multiple PMs. Therefore in order to ensure that each region is optimised on one
PM; the Decision Maker can be activated only if the leader of those PMs confirm that the
region is not currently being optimised on any other PMs. These processes are expressed
as step 5 and 6.

Once the autoscaling decision is determined, the process proceeds to the Actuator via
step 7. In particular, it is responsible for determining which concrete actions (e.g., scale
up/down, in/out and/or VM migration and replication etc) need to be taken in order
to fulfil the decision. In this work, we consider both vertical and horizontal scaling and
apply a simple solution to determine the actions, i.e., we always try vertical scaling (i.e.,
scale up/down) first before horizontal scaling (i.e., scale out/in). This is because hori-
zontal scaling is usually more expensive than vertical scaling. As for the VM migration/
replication decision, we always choose the one that result in smaller overhead based on a

predefined VM profiling pattern.

6.4 Experiments and Evaluations

To evaluate global benefit of the autoscaling decisions produced by our approach and the
overhead for reaching these decisions, we have conducted an experimental evaluation. We

compare our self-aware and self-adaptive approach (we simply refer to as self-aware ap-
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proach in the following sections) to other 4 non-self-aware approaches and styles that do
not cater for sensitivity in the autoscaling process. Each of the 4 approaches assumes dif-
ferent fixed region granularities: service-level, VM-level, PM-level and cloud-level control.
Because these 4 styles do not consider symptoms 3 and 4; they trigger elastic adaptation

only when symptoms 1 and/or 2 are detected.

6.4.1 Experiments Setup

We have implemented the architecture prototype using Java JDK1.6, and we assessed the
elastic autoscaling of 8 hypothetical cloud-based service—instancesﬂ under the control of
our prototype. In the experiment setup, each service-instance was deployed on software
stack including Apache, Tomcat and MySQL. We simulate a synthetical workload to each
service-instance. The workload has been designed in a way that the intensity was sufficient
for causing QoS interference on the co-located services and co-hosted VMs. The testbed
is a private cloud, where PMs are connected by Gigabit Ethernet and a switch. Xen [6]
is used as the underlying hypervisor. The initial deployment and the considered cloud
primitives of our experiments are shown in Table 6.2l The scale of each control primitive
and their corresponding prices are specified in Table [6.3]

It is worth noting that, unlike the previous chapters, we do not use RUBIiS benchmark
and the FIFA 98 workload in the experiments. This is because to better evaluate the
approach under various objective dependency, it requires a highly customizable testbed
to simulate the scenarios of different levels of objective dependency. This is very difficult,
if not impossible, to be achieved with the RUBIS benchmark and the FIFA 98 workload,
therefore we have used artificial service and workload to better control the scenarios in
the experiments.

For simplicity, we assume that each service-instance has only one QoS requirement,

'We have implemented those service-instances are stateless service. However, stateful services would
not affect the experiment results in our problem
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Table 6.2: Initial Deployments and the Examined Objectives/Primitives.

PM VM | Service- Objective Software CP Hardware CP
Instance

VM St Throughput Max threads CPU and Memory workload
PMIL and cost
So1 Throughput Max threads workload
and cost
VM S31 Throughput Max threads CPU and Memory workload
and cost
Si Throughput Max threads workload
and cost
PM2l VM S12 Throughput Max threads CPU and Memory workload
and cost
Ss1 Throughput Max threads workload
and cost
PM3| VM S32 Throughput Max threads CPU and Memory workload
and cost
Se1 Throughput Max threads workload
and cost

Table 6.3: Configured Values for Autoscaling and Price of Control Primitives.

Optional Values

Max threads from 5 to 50, 5 unit thread count $0.8 for each 5 unit
gap per hr
CPU from 1 to 8, 1 unit Compute unit $2.5 for each 1 unit
gap per hr
Max threads from 0.1 to 2, 0.1 GB $1.5 for each 0.1
unit gap unit per hr

which is throughput and one predefined cost model. To optimise the global objective
function in , we apply random optimisation algorithm with the same number of
iterations for each approach. This is because exhaustive algorithms might not be able to
produce a decision efficiently due to the large number of possible autoscaling decisions.
In addition, we assume that these service-instances and their QoS/cost are equivalently

important and thus all weights in the global objective function are set to 1.
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Table 6.4: Number of Regions for Each Granularity of Control Under Different Setups of
Service-Instances.

Setup Number of regions
self-aware and cloud- PM- VM-  service-
self-adaptive approach level level level level
2 service-instances maximum of 1 1 1 1 2
4 service-instances maximum of 1 1 1 2 4
6 service-instances maximum of 3 1 2 3 6
8 service-instances maximum of 4 1 3 4 8

6.4.2 Global Benefits

To examine the global benefit of the autoscaling decision produced by our self-aware
and self-adaptive approach, we run 4, 6 and 8 service-instances setups separately for 100
sampling intervals—we omit the case of 2 service-instances here as its result does not differ
much as when compared with the case of 4 service-instances. For each of the setup, we
collect the quality of global benefit for each autoscaling decision made during the period.
The purpose of the different setups is to examine the sensitivity of our approach to the
total number of objectives in cloud. Under each setup, we have performed independent
runs for each of the five approaches. The global benefit is measured by score, which is
the average result calculated by for the interval after a previous autoscaling decision
point and before the next one. Each of these intervals is referred to as effect point. Table
illustrates the number of regions for each approach, which was observed during the
experiments. It is worth noting that unlike the other approaches, the number of regions
in our self-aware and self-adaptive approach is subject to dynamic change. Therefore, the
result of our approach shown in Table is the maximum number of regions that have
been observed.

Figure illustrate the results of the global benefit score (y-axis) in relation to

each effect point (x-axis). Precisely, Figure shows the global benefit of our approach
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Figure 6.4: Global-Benefit in Case of 4 Service-Instances.
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Figure 6.5: Global-Benefit in Case of 6 Service-Instances.
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in contrast to the other 4 using setup for service-instances Sii, Sa1, S31 and Sy. As
we can see that the differences in global benefit for the self-aware, the PM-level and the
cloud-level approach are marginal. This is because they cluster all the objectives of these
4 service-instances within the same region. Therefore, they perform similarly under such
case. In contrast, the service-level and the VM-level control achieve much worse global
benefit following the elastic adaptation. This is due to incorrect clustering of the regions
as they ignore the sensitivity caused by QoS interferences on co-located services and co-
hosted VMs, which are significant in our experiments. Figure [6.5| considers two more
service-instances (Sjp and Ss;) in addition to the ones IN Figure . We can see that
the service-level and the VM-level control performs worse than the other three due to the
same reason as the previous case. Surprisingly, although our approach (at most 3 regions)
clusters more regions than that of the cloud-level one, its global benefit is better than that
of the cloud-level one. We believe that this is because we apply random algorithm in the
optimisation and our approach is able to properly cluster the objectives into more regions.
This implies that optimising locally and asynchronously on each independent region could
result in emergent global benefit using probabilistic algorithms. The PM-level (2 regions)
control, on the other hand, also performs better than that of the cloud-level one. We
believe that this is because it clusters the objectives per-PM, which similar to the clusters
produced by our approach and thus meets the actual sensitivity in the experiments by
chance. The self-aware approach performs similarly in contrast to the PM-level control.
This is because they produce similar clusters of regions. The only difference is that our
approach produces one extra region (we observe only 2 objectives within such region),
which is not significant enough to produce emergently better results. However, in the
next section we will show that our approach produces much smaller overhead than that
of the PM-level one.

Finally, Figure illustrates the global benefit for all 8 service-instances. We can
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Figure 6.6: Global-Benefit in Case of 8 Service-Instances.

see that the service-level and the VM-level control produce the worst results. The gap
between their results to the other three is larger than Figure 5 and 6. This is due to
the fact that they has incorrectly clustered the regions when introducing more service-
instances, and henceforth affecting the global benefit more seriously. Similar to the case
of Figure[6.5], our approach performs slightly better than that of the cloud-level one. The
PMe-level control performs similar to our approach for the reasons previously explained.
In summary, the elastic adaptations of our self-aware and self-adaptive approach pro-
duces much better global benefit than the service-level and the VM-level control under
the presence of QoS interferences. In addition, the global benefit produced by our ap-
proach are slightly better than that of the cloud-level control and similar to the PM-level
control. We observe that the improvement in global benefit tend to be better when having
more independent regions. In addition, we believe that our approach can outperform the
PM-level one when the number of QoS attributes and/or the number of services on each

PM increase.
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Figure 6.7: Overhead Under Different Numbers of Service-Instances.

6.4.3 Overhead

To evaluate the overhead for reaching an autoscaling decision, we compare the average
time taken in the decision making processes of our approach to the other 4 competitors,
under the setup of 2, 4, 6 and 8 service-instances. In particular, the average time is
calculated based on the time taken for reaching all the autoscaling decision within the
entire experiment run. As shown in Figure 6.7, which reveals the overhead (y-axis) in
relation to the number of service-instances (x-axis), we can see that in case of 2 service-
instances (S7; and Sp), the service-level control produces the smallest overhead. This
is because it performs optimisation and reaches an autoscaling decision for each service-
instance independently. The remaining approaches, on the other hand, produce similar
overhead because all the service-instances exist on a single VM.

In the case of 4 service-instances (S11, So1, S31 and Syp), the differences among the

proposed approach, the PM-level and the cloud-level control are marginal. They tend to
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result in bigger overhead than that of the service-level and VM-level ones. This is because
the our approach and the PM-level one only results in one region; they are actually the
same as the cloud-level control. In contrast, the service-level and the VM-level style are
unaffected by the increasing number of service-instances. In particular, the VM-level
control produce bigger overhead than that of the service-level one but better than the
other three. This is attributed to the fact that it optimises per-VM, which is coarser-level
than the service-level style. As expected, in case of 6 (S12 and Ss; in addition to the case
of 4) and 8 service-instances, the overhead of the proposed approach and the PM-level
one is becoming better than that of the cloud-level one. This is because our approach
and the PM-level control tend to produce more regions (as shown in Table , which
implies that it is able to asynchronously search within a smaller search space for each
region with less complexity in contrast to the cloud-level one. On the other hand, the
service-level and the VM-level styles remain unaffected. However, we can see that our
approach perform similar to the VM-level style and only slightly worse than the service-
level style. In contrast to the PM-level style, our approach still performs better. This is
attributed to the fact that we further allow clustering within a PM. Consequently, this
result in one more regions and thus the search space is further reduced. We can see that
even with only one more region, the achieved overhead of our approach gains considerable
improvement. We believe that such improvement can be amplified when it is possible to
cluster more regions.

Interestingly, we can see that unlike the overhead for cloud-level control, which in-
creases linearly; the overhead of our approach and the PM-level control increase from the
cases of 2 to 4 service-instances. They can drop again from the cases of 4 to 6 and remain
stable for the case of 8 service-instances. This is because both approaches determine that
only one region is allowed for the case of 2 and 4 service-instances. Therefore, it is the

same as the cloud-level one and the overhead could also increase in a similar way. When
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6 and 8 service-instances exist, both architectural styles result in more than one region.
Henceforth, the average result of overhead tends be smaller than previous cases, as there
are numbers of autoscaling decisions made for a region with smaller search spaces than
the single region in case of 2 and 4 service-instances.

To conclude, our self-aware and self-adaptive approach is able to achieve smaller over-
head in contrast to the cloud-level and the PM-level control as the number of region
increases. The overhead of our approach is close to that of the service-level and the VM-
level style. However, we can observe from Section that the achieved global benefit
are significantly better than these two. In addition, the experiments reveal that the over-
head of our approach is sensitive to the number of clustered regions. In particular, the

more independent regions are clustered, the smaller overhead is realised.

6.5 Conclusion

We have proposed a self-aware and self-adaptive approach that assists the autoscaling
process for dynamically guaranteeing globally-optimal benefit in elastic cloud. This is
achieved by dynamically clustering the objectives into regions for more efficient and ef-
fective decision making, which is the foundation to enable self-awareness for determining
granularity of control in cloud autoscaling. In this way, the autoscaling process can adap-
tively reach to the right granularity of control. Further, the propose approach has been
designed leveraging on the principle of self-awareness. Experimentally, we have evalu-
ated our approach with respect to global benefit achieved by the produced autoscaling
decisions and the overhead to reach these decisions. We compare the results to other 4
non-self-aware autoscaling approaches, each of which relies on a fixed granularity of con-
trol. The results reveal that our approach produces similar global benefit to the PM-level
control, and better than the rest approaches. On the other hand, it produces smaller

overhead than the cloud-level and the PM-level control; and could be similar to that of
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the service-level and the VM-level ones. The improvement on global benefit and overhead
tends to amplify when it is possible to have more regions.

So far, we have explored the self-aware and self-adaptive process in the QoS Modeller
and Region Controller components of our autoscaling framework. As discussed in this
chapter, we have demonstrated the benefit of the QoS models for determining the right
granularity of control when autoscaling in the cloud. We have also illustrated that, by
incorporating our QoS modelling and the region clustering approach, the global benefits
of autoscaling in the cloud can be further improved without heavy human intervention.
However, the aforementioned approaches have not explicitly considered the trade-off de-
cision making problem, which is one of the key challenges in autoscaling. In the next
chapter, we will refine the objective model and propose self-awareness enabled solution to

this problem, building on the approaches described in Chapter [4], [5] and this chapter.
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CHAPTER 7
SELF-AWARE AND SELF-ADAPTIVE
TRADE-OFF DECISION MAKING IN

CLouD AUTOSCALING

7.1 Introduction

The core phase in autoscaling is the dynamic decision making process that produces the
optimal (or near-optimal) decision, which consists of the newly configured values of
control primitives, for all the related objectives. However, as mentioned in Chapter [6]
objective-dependency (i.e., conflicted or harmonic objectives) often exist in the deci-
sions making process, which implies that trade-offs are necessary and the overall quality
of autoscaling can be significantly affected by the trade-offs made, hence render it as a
complex task. This is especially true for the shared infrastructure of cloud where objective-
dependency exists for both intra- and inter-services. That is to say, trade-off is not only
caused by the nature of objectives (intra-service), e.g, Throughput and cost objective of
a service; but also by the QoS interference (inter-services) due to the co-located services

on a VM and co-hosted VMs on a Physical Machine (PM) [112] [I16]. This is known as
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a typical consequence of resources contention in cloud [86] [99] [I16]. Therefore, given
the presence of complex objective-dependency, it is clear that the decision making for
autoscaling in the cloud is very difficult, if not impossible, to be handled by human de-
cision makers; and thus urges the need for self-adaptivity. Among the trade-off decisions
that quantified by the commonly used pareto-dominance relation, we are particularly in-
terested in the ones that achieve well-compromised trade-offs (a.k.a. knee points).
A decision is said to result in well-compromised trade-off, as when compared with its
neighbouring decisions, if it largely improves certain objectives; while causing relatively
small degradations to others. In other words, the improvements of all dependent objec-
tives tend to be well-balanced. The difficulty lies in how to dynamically and efficiently
achieve well-compromised trade-offs for autoscaling in the cloud, which we address in this

chapter.

7.1.1 Motivation and Challenges

The QoS performance of services and the cloud environment tend to fluctuate; conse-
quently, the QoS interference, the possible trade-off decisions for autoscaling and their
effects on the objectives are dynamic and uncertain. Existing work for autoscaling de-
cision making in the cloud can be either static [60] [52] in the sense that the mapping
between conditions and decisions are fixed; or dynamic [I0] [95] where the runtime condi-
tions and behaviours are used to ’learn’ new decisions. Those state-of-the-art approaches
often ignore QoS interference and its related trade-offs in autoscaling. Furthermore, they

tend to be limited in handling two challenges related to the trade-offs:

e Firstly, most of the work restricts the autoscaling decisions into fixed bundles (e.g.,
VM instance), which is rather inflexible, and thus it is necessary to consider any
combinations of the configured values for control knobs [I37]. However, given the

potentially large amount of possible combinations of the configured values, finding
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the optimal decisions and reasoning about their effects on objectives is known to be
an NP-hard problem [124] [57]. Henceforth, the key challenge is how to dynamically
optimise diversified trade-off decisions and thus produce better coverage of the trade-

offs surface.

e Secondly, another challenge is concerned with how to dynamically extract the deci-

sions that achieve well-compromised trade-offs, subject to runtime uncertainty.

Concretely, recall our survey of existing work for making autoscaling decision pre-
sented in Chapter |2 the static approaches are insufficient as they are restricted by the
simplified assumptions about the conditions and the mapped decisions. Although dy-
namic approaches have been proposed to address this limitation, most of them, e.g., [69]
only focus on optimising a single objective (e.g., cost), where other objectives are treated
as constraints. This means that the search process tends to be limited in exploring trade-
offs due to the optimisation of single objective. To this end, weighted-sum formulation
that aggregates all the objectives into a single one has been widely applied, e.g., [55].
Nevertheless, weighted-sum of objectives requires human intervention to carefully design
and tune the weights for the objectives, which is often an extremely complex and error-
prone exercise. In addition, finding the right weights in advance is extremely difficult
in the presence of QoS interference, as it is difficult to presume the relative importance
of the services and their levels of importance. On the other hand, a single aggregation
can track the search in a smaller search space and the resulted decisions are driven by
coarser and less information about the trade-offs surface. In other words, the optimality
and diversity of the resulted trade-offs decisions tend to be limited and therefore causing
it difficult to achieve well-compromised trade-offs.

There is a limited amount of work that leverage on the notion of multi-objective
optimisation [124] [57] [51] and pareto-dominance [67] based sort. Most commonly, they
apply Multi-Objective Genetic Algorithm (MOGA), e.g., NSGA-II [47], to search the
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trade-offs decisions without explicitly using weights. However, since they do not focus on
decisions that produces well-compromised trade-off, the amount of resulted decisions is

unavoidably large and can easily lead to imbalanced improvement.

7.1.2 Contributions

In this chapter, we propose a self-aware and self-adaptive approach for making autoscal-
ing decision in the cloud without human intervention. This approach grounds on Multi-
Objective Ant Colony Optimisation (MOACO) and a new compromise-dominance mecha-
nism, which are the key enablers of self-awareness for decision making in cloud autoscaling.
In this way, the approach dynamically and adaptively adjust its own behaviours to (i)
discover the possible trade-offs decisions at runtime; and (ii) extract the decisions that
produce well-compromised trade-offs with respect to all related objectives.

We have chosen MOACO because (i) it has been shown that existing MOGA based
autoscaling decision making in the cloud, such as NSGA-II, cannot optimise and make
trade-offs for more than 4 objectives [I11I]; while our problem needs to handle larger
numbers as we consider the trade-offs caused by QoS interference, e.g., we have considered
30 objectives in our experiments. (ii) As discussed in [I11], the limitation of MOGA for
large number of objectives is due to it needs pareto-dominance to evaluate the overall
quality of decisions for all objectives as the algorithm runs; henceforth, causing the MOGA
to obscure and miss important information about the trade-off surface, which restricts its
optimality and diversity when the number of objectives increases. Unlike MOGA, the
nature of MOACO allows us to design it in a way that decisions are evaluated against
each objective for many single objective optimisations in one run, and thus avoiding
the use of pareto-dominance in the optimisation. This is achieved by using aggregative
heuristics and different pheromone structures for the objectives. Hence, we only need to

evaluate the overall quality of decisions for all objectives (i.e., the compromises) after the
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optimisation has been competed. By doing so, the optimisation can optimise and make
trade-offs for larger number of objectives while ensuring good diversity. (iii) the sequential
pareto-dominance sorting of MOGA can incur large overhead; in contrast, MOACO can
gain benefits from parallel programming as each ant works in isolation. (iv) In many
other domains, e.g., [64], it has been shown that MOACO tends to outperform MOGA in
both optimality and diversity.

By separating MOACO and the evaluation of decisions’ overall quality for all objec-
tives, the MOACO is encouraged to explore more information about the trade-offs surface
while saving computational efforts. This design, as shown in [9], tends to produce bet-
ter optimised and diversified trade-off decisions. Instead of using pure pareto-dominance
[67] to evaluate the overall quality of decisions for all objectives during optimisation, we
propose a new mechanism, namely compromise-dominance, to search well-compromised
trade-offs based on the final result of MOACO. Here, we use pareto-dominance [67] to
measure superiority, and a combination of nash-dominance [I08] and the distance of de-
cision to measure fairness. In this way, we aim to achieve a well-balanced improvements
for the objectives without explicitly weighting them.

To the best of our knowledge, we are the first to address the problem of reaching
well-compromised trade-offs for autoscaling in the cloud while considering the trade-offs
caused by QoS interference. In particular, we show the effectiveness of the approach for up
to 30 dependent objectives, which is significantly larger than what is considered in state-
of-the-art work (i.e., 2-4 objectives). The experiment results suggest that our approach
produces better trade-offs quality in terms of the numbers of favourable objectives and the
extents to which they are optimised; it also produces smaller violation for requirements.
Moreover, our approach results in acceptable overheads and has balanced over- and under-

provisioning.
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7.2 Problem Analysis and Models

We adopt the same cloud system model, assumptions and the generic QoS model as
described in Chapter [d It is worth mentioning that dynamic QoS interference is an often
ignored, but important factor for decision making in cloud autoscaling. Consider, for
example, a scenario where the throughput of a service-instance S;; can be only improved
by provisioning more memory to the underlying VM. Such decision might not be an issue
when the contention is light. However, as the provision increases, eventually it will result
in throughput degradation to the other service-instances on the co-hosted VMs, leading
to dynamic QoS interference [26][139][116]. The same issue applies when we increase the
number of service threads for a service-instance, where the co-located service-instances
on the same VM might be interfered [I139][99]. These phenomena imply that there are
trade-offs between the throughput of S;; and those of the other service-instances, which
might be owned by different cloud consumers. It becomes more complex when we need
to consider trade-offs between conflicted objectives, e.g., the throughput and cost of S;;.
All these facts can lead to large number of dependent objectives in a decision making
process (i.e., more than 4). Since it is often too expensive to completely eliminate QoS
interference [110], we aim to optimise the services’ objectives till the point where QoS
interference becomes significant, and then mitigate the effects of QoS interference by
making well-compromised trade-offs.

However, well-compromised trade-offs cannot be guaranteed by existing purely pareto-
dominance based approaches [67]. Given the large number of dependent objectives caused
by QoS interference, quantifying compromise in the trade-offs purely based on pareto-
dominance can lead to a large number of trade-off decisions, which also contain the ones
that have imbalanced improvements. Consider, for example, two decision A and B, sup-

pose that A leads to 9 significantly better objectives than B; while B can only lead to
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one slightly better objective than A. These two decisions are regard as indifferentiable in
the sense of pareto-dominance. Assuming that both decisions satisfy all the requirements
constraints, it is generally the case that A is more preferable than B. However, since they
are equivalent in pareto-dominance, B can be selected instead of A, which results in badly
compromised trade-offs.

As mentioned in Chapter [0, we cluster the objectives into different regions. As a result,
autoscaling in the cloud needs to optimise multiple independent regions, each of which
contains different sets of dependent objectives. To cope with multi-objectivity, we revised
the weighted-sum objective function (as discussed in Chapter @ to a multi-objective
representation. That is to say, for each region, our goal is to produce an autoscaling
decision d that use the minimal costs to achieve the best possible QoSs, shown as the
following:

Magzimise or Minimise (O1(t), Oa(t)...0,(t)) (7.1)

where O,(t) denotes the oth objective in the region and it can be either QoS attribute

(4.1]) or cost (6.1)), subject to:

QoS (t) = SLAY (7.2)
Cost" (t) < Budget” (7.3)
min? < CPY(t) < max? (7.4)

whereby states that any QoS attribute should meet its Service Level Agreement
(SLA). denotes that the cost of each service-instance should not exceed its budget
requirement on a VM. Finally, ([7.4]) represents the possible configured values of control
primitives must be selected within a given range of the underlying hardware or software.
min% and maz¥ are the thresholds to control the range of possible configured values, and

they are dynamically updated online, as we will see in Section [7.3]
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Figure 7.1: Overview of the Autoscaling System with Self-Aware and Self-Adaptive De-
cision Making Approach.

It is obvious that, by omitting any predefined weights of objectives in (7.1)), we render
the problem as a discrete multi-objective optimisation problem, which involves multiple
trade-offs and is usually NP-hard [124] [57]. In the following sections, we specify our

MOACO and compromise-dominance based solution to the problem.

7.3 The Architecture for Trade-off Decision Making

in Cloud Autoscaling

To enable self-aware and self-adaptive decision making for autoscaling in the cloud, we
have designed and implemented an autoscaling system using decentralised feedback loops,
which is deployed and running on the root domain of each PM, as shown in Figure [7.1]
The components in our system, except QoS Modeller, are triggered when the system
detects violations of the requirements, i.e., violations of SLA and utilisation constraints

in case of over-provision. In particular, a requirement is said to be violated only if such
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violation has been observed for more than n sampling intervals, where n is a variable that
controls the trade-offs between stability and adaptivity of our system. The sensors on a
PM does not only sense data, but also the QoS models from other PMs. This is because
in some cases, a cloud-based service can be functionally dependent on services running
on the other PMs, thus creating the chances for objective-dependency.

Once the QoS models (as explained in Chapter 4] and [5|) and regions of objectives (as
explained in Chapter @ are identified, the focus of this chapter is to adaptively produce
decision that achieves well-compromised trade-offs with respect to the objectives in each
region. To this end, we design the self-adaptive Decision Maker component. Specifi-
cally, one of the sub-components of Decision Maker is the Optimiser component, which
leverages on MOACO to search and optimise for the possible set of trade-offs decisions.
Next, another sub-component, namely Compromise Ezplorer, extracts the decisions that
achieve well-compromised trade-offs from the result of Optimiser for autoscaling in the
cloud. Theses two sub-components are specified in Section and respectively. To
control the diversity of possible decisions, the possible configured values for each control
primitive of a service-instance are bounded within a range, as mentioned in (7.4). The
lower bound is set to the maximum value of the predefined value and the latest observed
one. On the other hand, after the upper bound is initialised by a predefined value, it is
then dynamically adjusted based on the newly decided value and the latest observed one:
it is increased by k% if both values converge to the upper bound; likewise, it is decreased
by k% if both values diverge from the upper bound.

We consider both vertical scaling and horizontal scaling in the actuators. The former
refers to change the configurations and provision of control primitives within a PM; the
latter refers to boots up/shutdown VMs on the other PMs via migration or replication.
In our system, vertical scaling always takes higher priority, providing that modern hyper-

visors (e.g., Xen [6]) can achieve dynamic vertical scaling with negligible overheads. The
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Table 7.1: The Mapping Between Self-Awareness Capabilities and the Sub-Components
for Making Trade-Off Decisions in Cloud Autoscaling.

Self- Component Description
Awareness
Capability
Interaction- | Optimiser Knowing how the decision making process can be af-
awareness fected by the objective dependency.
Goal- Optimiser and | Knowing how the decision making process can be af-
awareness Compromise fected by the QoS and cost models, and their require-
Explorer ments.
Self- Optimiser and | Self-adapting  its  behaviours  towards  well-
expression Compromise compromised trade-offs.
Explorer

resources on a PM are provisioned to the VMs in a first-come-first-serve basis. The hori-
zontal scaling, on the other hand, is only triggered when the resources of the PM tends to
be exhausted, i.e., when the total upper bounds of all co-hosted VMs for a resource type
exceeds the PM’s capacity, the last service-instance that requires to increase the upper
bound would be migrated /replicated. Likewise, a VM is removed when its provisions and
utilisations for all resource types are below thresholds.

To correctly design the Decision Maker component and improve its self-adaptivity
at the local level, the proposed approach has been leveraging on the principle of self-
awareness. Table shows the mapping between each sub-components of Decision Maker
and the self-awareness capabilities. Here, the self-awareness is concerned with knowing the
effects of decisions and the possible trade-offs. By processing the knowledge acquired via
the other two internal selves, i.e., QoS Modeller and Region Controller, the final internal
self Decision Maker would eventually lead to better self-adaptivity at the global level of
the autoscaling process.

From the perspective of our autoscaling framework, the contributions of this chapter
realise self-awareness in the internal self component, namely Decision Maker. In partic-

ular, self-awareness in Decision Maker is mainly concerned with knowing the trade-offs
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in making decisions. In the following, we will specify the techniques and algorithms that

achieve self-awareness in Decision Maker.

7.4 Searching and Optimising Trade-offs Decisions

for Autoscaling

Recall that for each region, our aim is to optimise subject to the requirements
and constraints in (7.2)-(7.4). To this end, we follow the multi-objective ant system
described by [9], in which there are one colony and n pheromone structures where n is the
number of objectives being optimised. The MOACO relies on probabilistic search-based
optimisation that assumes a fixed number of iterations. In each iteration, the ants select
different QoS or cost objectives to optimise for. By the end of an iteration, each ant
produces an autoscaling decision containing the selected configured values for those cloud
control primitives that are inputs of the objectives in (7.1]). This is achieved by the use
of a probabilistic rule, which expresses the desirability for an ant to choose a particular
value for each control primitive. This rule is based on the information about the current
pheromone trail, which drives the ants to search better decisions for a particular objective
that is selected; and an aggregative heuristic that guides the ants toward choosing better
overall decisions with respect to all objectives. Hence, the higher the amount of pheromone
and heuristic information is associated with a particular value of the control primitives, the
higher the probability is that an ant will choose it. This stochastic nature of the algorithm
allows the ants to explore a large space of possible decisions as the search proceeds.
Henceforth, it provides more alternatives from the trade-off surface than approaches that

based on weighted-sum of objectives.
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7.4.1 Probabilistic Rule

Suppose that an ant selects the oth QoS or cost objective to optimise; the probability for

selecting the xth configured value of the ath control primitive is defined by:

P — (Tx,a,o)a X (nx,a)ﬁ
T 2es(Tyao)® X (Mya)?

(7.5)

whereby S denotes the set of possible configured values for the ath control primitives;
Tr.ao 18 the pheromone for the zth configured value of the ath control primitives when
optimising the oth objective. n,, is the heuristic factor for the zth configured value
of the ath control primitive. « and [ are two parameters that determine their relative
importance. It is worth noting that for each ant, the control primitives, which we need to
find configured values for, are not restricted to the inputs of the oth objective function,

but also include those of the other QoS or cost objectives in (7.1]).

7.4.2 Heuristic Factor

Instead of aggregating the objectives to be optimised, we aggregate the heuristic infor-
mation to favour the decisions that tend to improve the overall quality of all objectives.
In this way, we aim to handle large number of objective while do not require to specify
weights on objectives. To this end, we leverage on the normalised, scalar-valued differ-
ence between the total improvement and the total degradation for all objectives. This is
achieved by comparing the outputs when using a newly configured value to that of the

original value, formally expressed as:

Z:,n:l Iz,a,o - m
115 ™ p Zf 2021 x,a,0 # 0
Nea = t+2om Do (76)

nmin .
£.0 otherwise

1+Z:)n:1 Dac,a,o
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whereby, for all m objectives that need to be optimised, >.7" I, ., is the total im-
provement over the current setup when using the xth configured value of the ath control
primitive in the decision. Likewise, the total degradation in contrast to the current setup
is denoted by Zznzl D, ... To prevent zero heuristic factor in case where the configured
values cannot improve any objectives, we use the minimum non-zero heuristic over all

min

v - as the initial value. It has been shown that

possible configured values, denoted by n
these operators promotes better coverage for searching possible trade-offs decisions [9].
In this way, even though the ants select different single objectives to optimise for, the

heuristic information still ensure that the configured values, which lead to overall better

decisions, are relatively more attractive.

7.4.3 Pheromone Update

After all ants complete the search in an iteration, the pheromone trails need to be updated
in order to help guiding the search towards better decisions. Unlike the heuristic infor-
mation, the pheromone is designed to favour the decisions that improve each objective
individually. As a result, the pheromone for a particular configured value of a control
primitive is specific to an objective. Each pheromone trail is updated by using the rule
below:

Tozo = (1 —p) X Tamzo+ ATé’ESt (7.7)

where p (0 < p < 1) is a constant that simulates the evaporation of pheromone trails,
it determines the speed of evaporation—a larger value implies faster evaporation. Thus,

the corresponding configured value becomes unattractive quicker. A7’ is a factor that

deposits the pheromone for some favourable decisions. In this work, we follow the MAX-
MIN Ant System [9] in which only the configured values that belongs to the iteration’s

best decision can deposit the pheromone, as defined by the following (C'P,; denotes the
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zth optional value of the ith control primitive):

1 ; best
TR @) T (@ if CPy,; €d)** to argmaz h
%) o

best __ . .
AT = 1+h(d3€5‘)7h1(dgl°b“l’b“t) if CP,; € d¥* to argmin h (7.8)

0 otherwise
\

where d”*! is the best decision for the oth objective at the current iteration, and @g‘obal-btest
denotes the best ever decision for the same objective; h is the corresponding objective
function. Therefore, the configured values in the best decisions would become more at-
tractive; whereas the others, which are not part of the best decisions, will lose pheromone
based on the speed of evaporation. In addition, by introducing the best ever decision in
the update, we force the search towards the optimal decision for an objective. It is easy
to see that, by incorporating the heuristic information and pheromones, the MOACO
favours the decisions that do not only benefit all objectives, but also tend to improve each
individual objective as much as possible. In this way, the harmonic objectives can be con-
tinually optimised in parallel till they reach the point where trade-off needs to be made;
while the conflicted objectives would be forced to make trade-offs from the beginning.
Consequently, the MOACO is able to produce higher diversity in the trade-off decisions.

Finally, given the fact that only the iterations’ best decisions are allowed to deposit the
pheromone, the ants may always conclude in the same or similar decisions, which causes
the search to be tracked in local spaces. To resolve this issue, we leverage on the solution
as used by the MAX-MIN Ant System [9], where the pheromone for the oth objective are

bounded within a given range, max min denoted as 77%* and 77" . By the end of an
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iteration, the bounds are updated using the iteration’s best decision:

maz m Zf to argmax h

T = (7.9)

W Zf to CL’/’ng"fl h

T = g X TImeT (7.10)

where h is the corresponding objective function. v is a factor that controls the length of
the range. By doing so, the diversity in the search is increased and it is more likely to

explore a large diversity of different decisions for making trade-offs.

7.4.4 Formal Description

Next, we formally explain MOACO in details by means of an algorithmic description.
As shown in Algorithm 5, the MOACO takes the models from and the possible
configured values for each control primitives as inputs. Firstly, MOACO required to take
a set of parameters for initialisation; it then compute the heuristic information and set
each pheromone using an identical value, meaning that at the beginning, each configured
value of a control primitive is equally important for an objective. The search starts off
by using numerous working ants (the number of ants should be greater than the number
of objectives), each of which selects an objective to optimise for. As we can see from
line 6-28, by leveraging on the probabilistic rule, an ant chooses a configured value for
each control primitive till it generates a decision. Such decision is then validated by
examining whether it meets the SLA and budget in and for all objectives.
if it does then the ant completes its job; otherwise it repeats till the maximum run for
finding a satisfied decision (i.e., those that resulted in no violated requirements). It is
worth noting that in case no satisfied decision is found, the ant would return the best

decision for the selected objective. All discovered decisions are archived regardless of
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Algorithm 5 MOACO for optimising and making trade-offs for autoscaling decisions
Inputs:

given a set of objectives to optimise, the associated set of control primitives inputs CP’
and V, ,which denotes the possible configured values for the ath control primitive
Declare:

q - the current iteration

mazlteration - the maximum iterations

ant - the current ant

maxAnt - the set of working ants

r - the current run of finding decision for an ant

maxRun - the maximum runs of search for an ant

d - the current decision of an ant for an objective

ant—pest - the best decision of an ant for an objective

d’est - the best local decision of all ants for an objective

dgtebal=best _ the best global decision of all ants for an objective so far

Outputs:
the set of decisions D for making trade-offs

1: For each configured value of a related control primitives,
2: calculate its heuristic information using

3: Initializes pheromone to the same value

4: for each ¢ <mazlteration do

5: q:=q+1

6: for each ant € maxAnt do

7: select an objective o from

8: r=r+l

9: for each CPY € CP' do
10: choose a configured value from V, via
11: end for
12: if d is better than d,,;_pes: for o then
13: dcmt—best =d
14: end if
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15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

if not all the objectives in d are satisfied then
if » <mazRun then
go to line 8
else
go to line 22
end if
else
Aant—pest := d
end if
D:=DU dant—best
if dunt_pest 18 better than d%! for o then
d*st = d g,
0 ant—best
end if
end for
for each objective o from equation do
if dbst is better than df'°*@=best for o then
dglobalfbest = dbest
o o

end if
compute T and 7 using
for each CPY € CP' do
for each configured value in V, do

update T, 4, via (7.7) and (7.8)

if 7,40 >7)"" then

Tx,a,0 “— Tomm
end if
if 7,40 <7 then
Te,a,0 “— Tgmn
end if
end for
end for
end for
end for
return D
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their quality, and the iteration’s best local decision for each objective is determined (line
26). After all ants produce decisions for all the objectives, the best global decision, which
results in the best value for an objective so far, is updated (line 31). Next, we compute
the pheromone bounds and update the pheromone for each configured value of a control
primitive, with respect to each objective (line 33 and 36). To avoid being tracked in
local space, a pheromone trail is reinitialised if it exceeds the upper bound; likewise, it
is updated accordingly if it fails below the lower bound (line 37-42). Eventually, the
search terminates when it reaches its maximum iterations, and returns all the decisions

identified.

7.5 Identifying Well-Compromised Trade-offs for Au-

toscaling

It is clear that MOACO is able to search the possible trade-off decisions for autoscaling in
the cloud; however, given the large amount of decisions produced, it does not cater for the
dynamic and uncertainty of the good compromises in the trade-offs. In this section, we
present a simple but efficient mechanism, namely compromise-dominance, to adaptively
find the decisions that achieve well-compromised trade-offs from the result of MOACO.
Specifically, the compromise-dominance consists of two phases: superiority phase and

fairness phase.

7.5.1 Superiority Phase

The first phase in our compromise-dominance mechanism is to ensure the superior de-
cisions, which are clearly more favourable than the others. To achieve this, we use the

well-known principle of pareto-dominance [67]:

Pareto-Dominance: A decision dy pareto-dominates another ds, if and only

if, (i) all the objective results achieved by dy are better than or equivalent to
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those achieved by dy; and (ii) the result of at least one objective achieved by

dy is better than the result of the same objective achieved by ds.

It is easy too see that if a decision pareto-dominates another, then it is better than
another in terms of the quality of every individual objective and the overall quality for all
objectives. In such context, the decisions, which are not pareto-dominated by any others,
are called non-pareto-dominated decisions. These decisions are pareto optimal in case no
objective can be further improved without making the other objectives worse off. Our
aim in this phase is to identify the non-pareto-dominated objectives. If they do not exist,

we use the decisions that being pareto-dominated the least.

7.5.2 Fairness Phase

After the superior decisions are determined, the second phase aims to ensure the fairness
in a decision. That is to say, we are interested in making the trade-offs well-balanced with

respect to all objectives. To this end, we leverage on Nash-dominance [108]:

Nash-Dominance: A decision di; nash-dominates another ds if and only if
there are less objectives that can improve their results by switching from dy to

dy than vice-versa.

If a decision nash-dominates another, it means that it is more fair with respect to
all objectives, and thus more stable. In particular, the decisions, which are not nash-
dominated by others, are called non-nash-dominated decisions. As proven in [108], a
non-nash-dominated decision reaches Nash Equilibrium where no objective can be further
improved without changing the results of other objectives. It has been shown that, Nash
Equilibrium is the most fair state for all objectives in the sense that it exhibits fair
competition, or compromise [I08]. Here, our aim is to identify the non-nash-dominated
objectives; or those that being nash-dominated the least if there is no non-nash-dominated

objectives.
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However, nash-dominance tends to be limited in reducing the number of decisions
when the number of objectives is small, e.g., less than 4 objectives. To this end, we use
an additional metric, namely distance of decision, to select well-compromised trade-offs
under those cases. Concretely, we select the best value of each objective from all the
decisions identified; these values form a theoretically optimal, but unrealistic reference
points. We then calculate the normalised Euclidean Distance of the result, which is
achieved by each decision, to this reference point. The decision(s), which leads to result

that has the minimal distance, is the one(s) that we are seeking.

7.5.3 Formal Description

We now formally explain the compromise-dominance mechanism in details using an algo-
rithmic description, as shown in Algorithm 6. We can see that the mechanism starts by
searching for satisfied decisions from the result generated by MOACO. If it fails to do so,
it selects the decisions that result in the least number of violated requirements (line 2-6).
This is because in some cases, the violations are inevitable outcomes due to, e.g., heavy
conflicts amongst the objectives and/or improper settings of the requirements. In such
context, reducing the number of violated requirements takes the highest priority.

Next, we ensure the superiority of decisions by ranking each decision in the set based
on the number of other decisions that pareto-dominate it. Smaller number represent
higher rank of a decision. Thus, we select a subset of decisions that is ranked the highest
in terms of pareto-dominance (line 7-15). Subsequently, by using nash-dominance, the
reduced set is further ranked for fairness. The less a decision is nash-dominated, the
higher the rank is. Likewise, we select a set of decisions that is ranked as the highest
for being nash-dominance (line 16-24). Next, we calculate the reference point and then
search a set of decisions that has the smallest distance to that point (line 25-33). Finally,

we randomly select one decision from the final set; as at this stage, all decisions tend to
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Algorithm 6 Compromise-dominance based trade-offs for autoscaling decisions

Inputs:

given a set of decisions D from Algorithm 5

Declare:

Dgeiectea -the set of selected decisions

d; -the ith decision within a set

n -the ranking of nash-dominance

p -the ranking of pareto-dominance

R -the reference point

dis; -the distance of the ith decision to the reference point
diSsmaniest -the smallest distance to the reference point

N -the collection of decisions and their ranks of nash-dominance
P -the collection of decisions and their ranks of pareto-dominance
C' -the collection of decisions with smallest distance to the reference point
Outputs:

the set of decisions D for making trade-offs

start
Dgerectea = find all satisfied decisions from D
if Dselected = (Z) then
Dgerectea := find all decisions that violate the least
number of objectives’ requirement from D
end if
for each d; in Dg.jeeteq do
p:=10
for each d; in Dgcjecteqd do
if d; is pareto-dominated by d; then
pi=p+1
end if
end for
P:=PU <d,», p>
. end for

e e e e e
A S el
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16:

17
18

19:
20:
21:
22:
23:
24:
25:
26:
27:

28
29

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

Dygelectea := find the decision(s) with smallest p from P
: R := find the reference point based on the optimal values
: for each d; in Dgjecteq dO
n:=0
for each d; in Dgcjecteq do
if d; is nash-dominated by d; then
n:=n+l
end if
end for
N :=NU{d;,n)
end for
Dygelectea := find the decision(s) with smallest n from N
: R = find the reference point based on the optimal values
: for each d; in Dggjecteq dO
dis; := the distance between d; and R
if dis; < dissmanes: then
if d18; <diSsmaites: then
C:=10
end if
dissmallest = dlsz
end if
end for
return randomly selected decision from C
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be equivalent in terms of superiority and fairness. Whenever there is only one decision

left during the process, the algorithm terminates immediately and returns such decision.

7.6 Experiments and Evaluations

We integrate our MOACO and the Compromise-Dominance (CD) mechanism, denoted as
MOACO-CD. To evaluate the proposed approach, we have conducted various quantitative
experiments. The primary goal of these experiments is to validate the effectiveness of our

approach against other state-of-the-art autoscaling approaches in the cloud, these are:

e RULE - A conventional rule-based autoscaling approach that makes decisions us-
ing predefined if-conditions-then-action mapping e.g., [60] [52]. This approach does
not require explicit QoS model as the QoS of a service-instance is assumed to be
sensitive to its own control primitives only, e.g., the CPU and thread of the said
service-instance. Specifically, violations of QoS would increase all the relevant con-
trol primitives to the next higher value; while low utilisation would decrease them

to the next lower value.

e HILL - A more sophisticated autoscaling approach that relies on our QoS modelling
and region controlling techniques, but the decision making process leverages on a
weighted-sum formulation of all the dependent objectives e.g., [10] [95] . Here, the
approach leverages on greedy and heuristic based solution: the random-restart hill-
climbing algorithm for optimisation, in which it starts with an arbitrary decision,
then attempts to find a better decision by incrementally and independently changing
the values of each control primitives in the models. The algorithm terminates when
a maximum iteration has been reached. The best decision, in terms of the weighted-

sum formulation, is returned.
e RANDOM - Another autoscaling approach that is similar to HILL, but instead
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of using hill-climbing, a random optimisation algorithm is applied. This algorithm
randomly changes the values of each related control primitive, and terminates when
it reaches a maximum number of iterations. The best decision is selected as indicated

by the weighted-sum formulation.

e MOGA - A most commonly used multi-objective genetic algorithm derived from
NSGA-II [124] [57] [5I]. We have also designed MOGA to benefit from our QoS
mode;ling and region controlling techniques, We configure the optimal population

size and number of iterations through careful profiling on our testbed.

Notably, we have configured the approaches to use the identical number of global
iterations for the worst case. However, to prevent them from completing with arbitrary
latency, we have set a running time threshold (i.e., 75s), which forces the algorithms to
terminate and return the best decision found. For HILL and RANDOM, we normalise
each objective’s result in the weighted-sum of objectives and set all the weights to 1. We

use the following 5 criteria to quantify the comparisons:

1. Coverage of two approaches (C-metric) [143] - this metric performs pairwise
comparison to measure the comparative quality of trade-offs achieved by two ap-
proaches. It is calculated using the number of (relatively) better objectives achieved
by one approach, divided by the total number of considered objectives. Formally,

the C-metric is defined as:

Croa € Aoy € Biroq = Top)

>~ 1
C(A,B) = X St Toq= - X Zri’o’a (7.11)

whereby A and B represent two approaches and their corresponding sets of average
objective results for all intervals that are being considered. r,, and r,; are the

average results of the oth objective, as achieved by the two approaches; these average
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results are calculated by averaging the objective values for n intervals, as denoted

by roq = % X Y Tioa- |X| is the total number of objectives that we consider.
700 € A 7oy € B,roq = Top| counts how many objective results achieved by A are
better than those achieved by B. Intuitively, the C-metric is an effective method
to quantify the quality of trade-offs with respect to the number of the favourable
objectives. The greater the value is, the better the approach is. C(A, B) = 1 means

that the results of all objectives achieved by A are better than those achieved by B.

. Generational Distance (G-Distance) [123] - this is another intuitive metric
that measures the quality of trade-offs. Unlike the C-metric, G-Distance focuses on
the generational extents to which the objectives are optimised as achieved by an

approach. Formally, it is calculated by:

|X] n
1 1
G — Distance = \| Y (o= X (5 X Y 1iga) — 18" ")) 7.12
istance (rg”gfm‘“? ((n i:17",,) T ) (7.12)

o=1

where r; , , is the result of the oth objective at the ith interval, as achieved by the ath
approach. rav9=test and ra9=maz are the best and the max average result (over all
approaches) for the oth objective respectively. Smaller value of G-Distance means

better results. The remaining notations are the same as (13).

. Violations of Requirements - for each approach, we measure the extent to which

the requirements (i.e., SLA or budget) of an objective are violated, as defined in:

Irioa*t0| -
100 <& T if b = Tiga
— X Y v S.t, v = ' (7.13)

i=1 0 otherwise

whereby v; is the extent of violation at the ith interval; ¢, is the requirement thresh-

old for the oth objective, i.e., SLA or budget; and n is the total number of intervals.
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4. Over- and Under-Provisioning - for each approach, we quantify over-/under-
provision by means of the average difference between the provision and demand for
each control primitive type. Formally, the over-provision of a control primitive type

is calculated as:

/
Uj 5 —U; 5 . /
m n K2V

7 if uig > up;

0 SN Uiyosit, Uiy = i (7.14)

mXxXmn )
j=1 =1 0 otherwise

where w; ; is the jth VM (for hardware control primitives) or service-instance (for
software control primitives) on a PM. n and m are respectively the number of
/

intervals and VMs/service-instances.

i; 1s the corresponding demand using the

highest possible value that we have observed. The calculation of under- provision

can be similarly applied.

5. Owerhead - Finally, we measure the overhead of each approach in terms of the
latency in making decisions. In particular, we report on the results for both best

and worst case scenarios.

7.6.1 Experiments Setup

We conducted experiments on private cloud using a cluster of PMs, each of which has
Intel i7 2.8GHz Quad Cores and 4GB RAM. The PMs use Xen v3.0.3 [6] as the hypervisor
and the autoscaling process is running on Dom0. To eliminate the interference caused by
Dom0, we allocated one CPU core and 600 MB RAM to it, which tends to be sufficient.
Our approach and the other competitors are implemented using Java JDK 1.6. To simulate
QoS interference caused by the VMs while not exhausting resources, we run three co-
hosted VMs on each PM. Initially, we allocate the same amounts of hardware resources
for each of the co-hosted VMs, these are 30% cap of a dedicated CPU core and 250 MB

RAM. All VMs run linux kernel v2.6.16.29. It is worth noting that the experiments have
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relied on the same testbed as in Chapter 4 and 5.

Our experiments leverage on RUBIS [5], which is a cloud-based application consists
of 26 co-located services using the eBay.com model. For simplicity, we have used three
RUBIS snapshots, each of which consists of a 2-tiers (i.e., application and database tiers)
based RUBIS application. A RUBIS snapshot is deployed with a software stack including
linux kernel v2.6.16.29, Tomcat v6.0.28 and MySQL v3.23.58 on each co-hosted VM of
the master PM. The snapshots use heterogeneous database volume size ranging from
1GB to 5GB data. We have implemented sensors and actuators deployed on each service-
instance/VM for collecting the online data and scaling the control primitives respectively.

In this work, we have realised vertical scaling actions (a.k.a. scale-up/-down) by using
a customised listener on Tomcat and the management module of Xen. As for horizontal
scaling actions (a.k.a. scale-in/-out), we leverage on master-salves based replication. Each
of the three RUBIS snapshots and its replicas are linked to a dedicated load balancer.
Three client emulators are used and they apply read/write pattern to generate requests
for each load balancer. To simulate a realistic workload within the capacity of our testbed,
we vary the number of clients according to the compressed FIFA98 workload [14]. This
setup can generate up to 400 parallel requests, which is large enough to simulate QoS

interference.

7.6.2 QoS Attributes, Primitives and Configurations

For the simplicity of exposition, we have selected commonly used QoS attributes and
primitives in the evaluation. In our experiments, we have used identical setups for all
approaches. As listed in Table [7.2] these QoS attributes and primitives are per-service
except for CPU and memory as they are shared on a VM. Table shows the configu-
rations for each control primitive type. Scale-out occurs if the summed max of CPU or

memory for all the co-hosted VM exceeds the PM’s capacity. The hardware and software
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Table 7.2: The Examined QoS Attributes and Cloud Primitives.

QoS and Primitives Description

Response Time (ms) The average leaped time between a service-
instance receives and replies a request.

Output Throughput (req/min) The average rate of completed requests.
Reliability (%) The percentage of requests that being completed
faster than the SLA. (2-4 ms)
Availability (%) The percentage of time that the average response
time above a threshold. (4 ms)
CPU (%) Observed average CPU utilisation of a VM.
CP input Memory (MB) Observed average Memory utilisation of a VM.

Thread (no. of req)  Observed maximum concurrent threads of a
service-instance. (a modified control knob of Tom-
cat’s mazThread property)

EP input  Workload (req/min)  Observed average request rate of a service-
instance.

control primitives of a new replica VM and service are set as the initial value i. Likewise,
scale-in occurs if CPU and memory of a VM are provisioned as min, and their utilisa-
tions are below u. By carefully examining the objective-dependency of services based on
our QoS modelling and region clustering approaches, we intend to manage and autoscale
the services that exhibit the most fluctuated performance, and those that are the most
likely to lead to the largest number of dependent objectives in a decision process. We
have identified two services on each RUBIS snapshot while leaving the other 24 services
as unmanaged, generating interference only. Table illustrates the SLA and budget
(per interval on a VM) for each managed service-instance. We can see that there are
6 managed service-instance on a PM, each has 5 different objectives. All these setups
give us up to 30 dependent objectives in one decision making process. Table is the
configurations for MOACO.

In each experiment run, the sampling and modelling intervals are both 120s with
the total of 70 intervals; and there is one new sample per interval for updating the QoS

models. The autoscaling process is triggered when any violations of SLA or low utilisation
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Table 7.3: Configurations for Each Control Primitive Type.

step min max

CPU 30% 50% 1% 15% 40% 70% 10% $0.01
Memory 250MB 50% oMB  230MB 280MB 70% 10% $0.002
Thread ) 50% 1 4 10 70% 10% $0.017

i = the initial value; u = the lowest possible utilisation for triggering autoscaling; step = the
margin between two neighbour values; min = the minimum value; mazx = the maximum value; t
= the % threshold to trigger change of the max value; k = the % extent to which the mazx value
1s changed; p = the price per unit per interval for a service-instance.

Table 7.4: SLA and Budget for the Managed Service-Instances. (6 service-instances, each
has 5 objectives)

Response  Throughput Reliability —Availability = Cost ($)

Time (ms) (req/min) ) (%)
on gl 3w e e
T R
T A R

Table 7.5: Configurations of MOACO.

v maxlteration mazAnt mazRun

| 4 1 01 05 5 150 100 |

is detected for one interval. Given that the QoS modelling approach requires certain
historical data to build the models, we record the achieved QoS and cost of all managed
service-instances on the master PM for the rear 50 intervals. We have conducted 10

experiment runs for each approach.

7.6.3 Quality of Trade-offs

To evaluate the quality of trade-offs achieved by our approach, we leverage on the afore-
mentioned C-metric and G-Distance; the results are plotted in Table [7.6] For C-metric,

our MOACO-CD is better than MOGA as the latter is limited in optimising and making
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Table 7.6: Quality of Trade-offs. (the best is highlighted in bold)

Pairwise Comparison

C(MOACO-CD, MOGA) : C(MOGA, MOACO-CD) 0.8: 0.2
C(MOACO-CD, RULE) : C(RULE , MOACO-CD) 0.73: 0.27
C(MOACO-CD,HILL) : C(HILL, MOACO-CD) 0.8: 0.2
C(MOACO-CD, RANDOM) : C(RANDOM, MOACO-CD) 0.73 : 0.27

MOACO-CD MOGA RANDOM  RULE HILL
| G-Distance ~ 0.4071 1.2707  0.9407 1.5892 1.6958 |

trade-off for a large number of objectives; it also does not consider well-compromised
trade-offs. MOACO-CD is better than RULE, which does not allow explicit optimisation
and trade-off. Finally, MOACO-CD is also better than HILL and RANDOM, because
the weighted-sum of objectives in these two has greatly restricted their search into local
areas of the search space, henceforth they tend to be limited in improving the diversity
of trade-offs decisions. As a result, we can conclude that our MOACO-CD is the best
according to C-metric, meaning that it has the best quality of trade-offs in terms of the
number of the favourable objectives.

As for G-Distance, we note that our MOACO-CD again achieves the best result,
producing the best quality of trade-offs in terms of the extents to which the objectives are
optimised. We can see that RANDOM is better than MOGA, RULE and HILL, this is
because even though it is restricted by the weighted-sum of objectives, RANDOM tends
to largely improve on a few objectives and thus leading to second best G-Distance result.
The MOGA is ranked the third, because despite it caters for multi-objective, the inability
to handle large number of objective and the limited diversity have caused it to optimise
only a small amount of objectives. We can also see that the RULE and HILL are the worst
and they exhibit marginal difference. This is because RULE is not capable to perform
explicit trade-offs and optimisation; while HILL is greatly affected by high latency due to

its greedy nature.
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Figure 7.2: Normalised Pair-Wised Comparison Between MOACO-CD and Each of the
Other Approaches. (the larger area means better trade-offs; objective number 1-6 de-
notes Response Time; 7-12 denotes Throughput; 13-18 denotes Reliability; 19-24 denotes
Availability and 25-30 denotes cost)

To provide a detailed view of the achieved QoS and cost values, Figure shows pair-
wise comparisons between MOACO-CD and other approaches with respect to each of the
30 objectives that we have considered. For each objective dimension In the figure, a point
that closer to the labeled number means better value for that objective. For example,
the MOACO-CD produce better result on objective number 1 as when compared with
the others. Intuitively, when all 30 objective dimensions are considered, the larger area

that cover by an approach means better quality of trade-off is achieved. We can clearly
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see that in contrast to the other autoscaling approaches, the MOACO-CD covers larger
area. In particular, its decisions tend to be significantly better than those of the others
on most QoS objectives while slightly worse, mainly on the Availability (against MOGA)
or Cost (against RULE, HILL and RANDOM) objectives, which are smaller in number.
This means MOACO-CD favours decisions that largely improve on the majority of the
objectives; while causing smaller degradation to others.

In conclusion, the MOACO-CD produces better trade-offs than the others in terms of
the numbers of favourable objectives and the extents to which they are optimised. This
is because it favours the autoscaling decisions that do not only benefit all the objectives,
but also tend to improve on each individual objective as much as possible. Therefore,
MOACO-CD is capable to perform better optimisation and find trade-offs decisions with
higher diversity for large number of objectives. In addition, the compromise-dominance
balances the improvements in the objectives, which lead to well-compromised trade-offs.
In particular, the possible trade-offs are handled properly, not only for the naturally
conflicted objectives (e.g. Throughput and cost objective of a service); but also for the

conflicts caused by QoS interference.

7.6.4 Violations of Requirements

Next, we examine whether the decisions made by our approach can eliminate runtime
violations of the SLA and budget, as listed in Table[7.4 We use to assess the extents
of these violations when they occur. As shown in Table[7.7] violations do exist, mainly for
the Response Time and Throughput objectives. However, we can see that MOACO-CD
leads to significantly smaller violations as when compared with the others—it has the best
results for 12 out of the 13 cases. In contrast, MOGA is ranked the second as it obtains
the second best results for most cases. This proves that MOACO-CD outperforms MOGA

in reducing SLA violations, while optimising and making trade-offs for large number of
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Table 7.7: The Average Violations (%). (the best is highlighted in bold)

MOACO-CD MOGA RULE  HILL R,ANDOM\

Servicel Response Time 102.02 190.42 921.62 853.32 259.94
Throughput 10.49 13.45 14.37 14.52 14.26
Service2 Response Time 86.37 316.74 2370.53 434.88 401.09
Throughput 19.15 20.46 21 21.86 21.06
Service3 Response Time 99.52 389.12  405.33  293.55 457.53
Throughput 39.71 39.93 39.79 41.57 40
Serviced Response Time 73.79 614.90 797.53  730.25 617.17
Throughput 19.84 21.33 20.75 21.58 19.86
Service5 Response Time 0 186.71  357.58  676.56 236.49
Throughput 13.06 13.08 13.22 16.48 14.81
Response Time 16.37 560.74  214.88 2364.84 192.83
Service6  Throughput 61.81 61.93 60.18 62.49 62.3
Availability 0 0 0 0.02 0
| Standard Deviation 0.52 2.69 6.62 7.55 249 |

objectives. RANDOM is ranked the third while HILL and RULE do not differ much in
terms of the overall violations. In particular, the maximum violation of MOACO-CD is
only 102.02%, which is at least 6 times better than the 2307.53% for RULE, the 2364.84%
for HILL, the 617.17% for RANDOM and the 614.9% for MOGA. We can also see that
MOACO-CD has the smallest standard deviation on the violations for different service-
instances, meaning that violations in MOACO-CD are better balanced than the other
four. This implies that the trade-offs caused by QoS interference are better compromised;
otherwise, it can result in imbalanced scenarios where the QoS attributes of some service-
instances are advantaged while those of the others are severely violated, e.g., the cases
for RULE and HILL.

As a detailed example, Figure illustrates the fluctuations of QoS and cost for
Service 6 in one experiment run. For Response Time (Figure and [7.3p), we can
clearly see that, in contrast to the others, our MOACO-CD does not only significantly
reduce violations, but also produce better and more stable response time when the SLA is

complied. This is the same case for Throughput (Figure ) From Figure , we can
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Figure 7.3: The Achieved QoS Results and Cost for Service 6 in One Experiment Run.
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Table 7.8: The Over- and Under-Provisioning (%). (the best is highlighted in bold)

MOACO-CD MOGA RULE HILL RANDOM

CPU Over-provision 6.69 15.09 9.48  20.36 15.07
Under-provision 14.40 9.86 11.82  13.06 9.46

Memory Over-provision 10.50 10.66 0.52 094 3.00
Under-provision 2.21 2.50 19.13  20.40 11.13

Thread Over-provision 22.29 37.05 21.94 32.38 40.00
Under-provision 22.92 15.55 39.05 27.42 9.30

observe that there are no violations for Reliability. In such case, MOACO-CD does not
only constantly produces the best performance, but also tends to have the most stable
results along the trend: we can clearly see that for the other approaches, the achieved
reliability drops gradually at around 25-30 time step; whereas the results achieved by
MOACO-CD do not fluctuate much. We observe the similar result for Availability (Figure
[7.3k). Finally, we can see that the cost incurred by MOACO-CD is similar to MOGA, but
slightly higher than the others (Figure [7.3f); however, the extra cost is within the given
budget and it is therefore acceptable. That is to say, MOACO-CD comes with some extra
costs but it can lead to significantly better performance on many other QoS objectives.
In summary, we can conclude that MOACO-CD performs significantly better than
the other approaches for reducing SLA violations on a large number of objectives. In
addition, it leads to better and more stable results when the SLAs are complied. This
might come with slightly higher cost, yet still comply with the budget requirements. Fur-
ther, MOACO-CD achieves well-balanced improvement on the QoS attributes for different
service-instances, which implies that the trade-offs caused by the QoS interference for both

services and VMs are well compromised, even for large number of objectives.

7.6.5 Over- and Under-Provisioning

We now evaluate the proposed approach by means of the difference between the provision

and demand for each control primitive type. We calculate over- and under-provisioning
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using . Table shows the average results for all managed service-instances and
VMs on the master PM.

For CPU and thread, the results of MOACO-CD do not differ much as when com-
pared to the other four. In addition, the amounts of over-/under-provision are balanced.
Interestingly, for memory, we can see that MOACO-CD and MOGA perform significantly
better than the others on under-provision, but they are the worst on over-provision with
considerable difference. This is because they detect that memory can be the most critical
control primitives that significantly influences the QoSs. Moreover, they have assumed
that some extra costs can lead to significantly better performance on other objectives.
Consequently, both MOACO-CD and MOGA try to avoid under-provisioning by allo-
cating more memory than the actual demand. Indeed, in contrast to MOACO-CD and
MOGA, although the other three have better results on over-provision, their bigger under-
provision have resulted in significantly worse QoS and SLA violations (especially for RULE
and HILL), as evident in Section 6.4. Finally, although MOACO-CD and MOGA obtain
similar results for elasticity, we have shown that MOACO-CD outperforms MOGA on the
quality of trade-offs and the ability to reduce SLA violation and to optimise QoSs.

In conclusion, our approach results in good elasticity, providing that the amounts of
over- /under-provision achieved by MOACO-CD are balanced and acceptable for CPU
and thread. Among the others, MOACO-CD tends to have the best under-provision and
the second worst, yet acceptable over-provision for memory. However, this is a trade-
off between cost and QoS attributes, where the MOACO-CD has assumed that large
improvements on the QoS attributes can be achieved by having slightly more costs, which

are mainly spent on the memory.
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Table 7.9: The Overhead (s). (the best is highlighted in bold)

MOACO-CD MOGA HILL RANDOM

Best case 1.2 12.3 6.8 3.5
Worst case 50.3 69.7 75.09 38.91

7.6.6 Overhead

Finally, we validate the overhead of our approach by computing latency of the decision
making process. Undoubtedly, RULE results in negligible overheads and thus it is omitted
from the comparison. As shown in Table[7.9] we can see that for all four approaches, there
is a considerable difference between the worst case and best case scenarios. Indeed, their
actual overhead can be sensitive to the complexity of the used models (i.e., by the QoS
Modeller); and the number of objectives that are assigned in the same decision making
process (i.e., by the Region Controller). This is also the primary reason why we have
reported on the best/worst case result instead of using the mean value, which can only
provide coarse assessment of the runtime overhead. In contrast, considering results for
extreme cases can provide insightful view for decision making in cloud autoscaling.

For the best case scenario, our MOACO-CD has the smallest overhead (1.2s) while
the HILL has the biggest. However, the results of all four approaches are acceptable.
On the other hand, the RANDOM achieves the smallest overhead (38.91s) in the worst
case scenario; while the MOACO-CD, MOGA and HILL report 50.3s, 69.7s and 75.09s
respectively. Nevertheless, as we have seen in previous sections, the MOACO-CD is
significantly better than RANDOM in terms the quality of trade-offs and its capabilities
in reducing SLA violations. For both cases, MOGA has bigger latency than MOACO-CD
due to the overhead of pareto-dominance sort during optimisation. Another observation
is that HILL is often forced to terminate as it reaches the runtime threshold (i.e., 75s);

thus its actual overhead in the worst case scenario can be bigger than 75.09s. This is the
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main reason that causes its poor performance in the quality of trade-offs and violations.
Overall, MOACO-CD has acceptable overhead even for the worst case, providing that the

sampling interval is 120s.

7.7 Conclusion

The trade-off decision making is undoubtedly a crucial and challenging task for autoscal-
ing in the cloud. In this chapter, we present a self-adaptive approach for autoscaling
decision making in the cloud. In particular, it adaptively resolves the trade-offs with-
out human intervention. By leveraging on MOACOQO, the approach dynamically searches
and optimises for possible trade-offs with high diversity. Further, we propose compromise-
dominance for adaptively selecting the decision that leads to well-compromised trade-offs.
The experiments show that, in contrast to the rule-based, single-objective heuristic based,
single-objective randomised and MOGA based autoscaling approaches, our approach pro-
duces better trade-offs quality in terms of the numbers of favourable objectives and the
the extents to which they are optimised; and much smaller violations of the requirements
with large number of objectives. Moreover, it results in acceptable overhead and has
balanced elasticity in terms of the over-/under-provision.

By now, we have explored the entire proposed autoscaling framework, not only at
a global level (i.e., Chapter , but also at local levels of each important components
with great details (i.e., Chapter , @ and this chapter). In the next chapter, we will

qualitatively evaluate the proposed autoscaling framework against various criteria.
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CHAPTER 8

REFLECTION AND APPRAISAL

8.1 Dealing with Dynamics and Uncertainty

In the context of computing systems, dynamic means continuous changes in the system
and the environments. It implies the necessity of self-adaptivity on the system to react
on changes in order to assure some of its properties. Uncertainty, on the other hand, is
a similar, but still different notion of dynamics. It describes the unpredictability of an
object and hence implies the difficulty in realising self-adaptivity on systems.

One can argue that cloud-based services is dynamic but certain in some cases, e.g.,
there is a fluctuated workload but can exhibit strong seasonality. That is to say, the
behaviour of the cloud-based service does change but tend to be predicted to some extent.
In such cases, a simple autoscaling system might be a working solution providing that
the cloud-based services has undergone a formal profiling process and can be adaptive
in response to the changes. However, most commonly, the behaviour of the cloud-based
service can exhibit both dynamics and uncertainty, e.g., unexpected spike on workload
and QoS interference. In this case, ensuring effective self-adaptivity when designing the
autoscaling system becomes mere difficult due to the unpredictability. This thesis provides

explicit treatment for scenarios that exhibit both dynamics and uncertainties.
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We intend to evaluate how the dynamics and uncertainties of cloud-based services are
captured and handled by the proposed autoscaling framework. As we have discussed in
previous chapters, dynamics and uncertainty are the fundamental factor in cloud environ-
ment and such nature implies that it is hard to presume the QoS performance and cost of
cloud-based services. The dynamics and uncertainties can be associated with many factors
in cloud autoscaling, including QoS sensitivity, QoS interference, the effects of granularity
of control on the global benefit, the effects of decision on objectives and the trade-offs.
The proposed autoscaling framework, through using the principle of self-awareness and

the related algorithms, have been explicitly designed to cope with those factors.

e Dynamics and uncertainties in QoS modelling

— We have designed a self-aware and self-adaptive QoS modelling approach, which
continually learns the knowledge about the significant inputs of QoS models,
the magnitude of these inputs, and QoS interference. As the knowledge changes
in an uncertain manner, the modelling process can dynamically acquire such

knowledge and adapt the expression of the QoS models accordingly.

e Dynamics and uncertainties in granularity of control

— We have used a self-aware and self-adaptive region clustering approach that
continually learns the knowledge about the effects of granularity of control on
the global benefit and deployment of cloud-based services. In the events of
unpredictable and uncertain changes, the approach can aware of when and

which regions to adapt because of its ability of acquiring the knowledge.

e Dynamics and uncertainties in decision making

— We proposed a self-aware and self-adaptive autoscaling decision making ap-

proach to continually learn the knowledge regarding the effects of decision on
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objectives and the possible trade-offs, which can be caused by both naturally
conflicted objectives and QoS interference. The decision making process is ca-
pable to adapt its own behaviours according to the changing knowledge, which
is uncertain in nature. In such a way, we aim to adaptively reach the optimal

(or near-optimal) decision that achieve well-compromised trade-offs.

Collectively, the previous points lead to a self-aware and self-adaptive autoscaling
system, which can handle different forms of dynamics and uncertainties that exhibited by
cloud-based services, as we have quantitatively analysed in previous chapters. Therefore,
the QoS and cost objective of all cloud-based services can be continually optimised and

thus their requirements are better complied, which leads to better elasticity.

8.2 Scalability

Scalability refers to the ability of a system to accommodate the growth of data, processes
and workload etc. In the context of self-aware and self-adaptive autoscaling system, we
are particularly interested in the scalability of the approach with respect to the increasing
amount of historical data, the number of cloud primitives, the number of cloud-based

services and their objectives.
e Scalability with respect to the amount of historical data

— The amount of historical data influence the overhead of the self-aware and self-
adaptive QoS modelling. One way to improve scalability is to include only the
most significant inputs in the QoS models, as we have achieved in the primitives
selection phase. By limiting the inputs in the models, we significantly reduce
the training time required for QoS function training because there is less effects
caused by the increasing amount of historical data. We have shown that such

design also leads to better model accuracy.
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— However, although we can limit the inputs for QoS model, the actual amount
of historical data does not change and hence they can become extremely large
as time goes by. This may not be a major issue for primitives selection pro-
cess given that the calculation of cumulative relevance and redundancy is very
efficient; but it can be a bottleneck for the QoS function training. Therefore a
forgotten strategy is desired when there is no need to take too much data into
account. To achieve such goal, one could set a threshold to the maximum num-
ber of historical intervals to be recorded. Once such threshold is exceeded, the
QoS function training process can apply cross-validation to examine if dropping
data from the oldest intervals would affect the model accuracy. For example, if

the reduction in accuracy is less than 1% error then such data can be removed.

e Scalability with respect to the number of cloud primitives

— For self-aware and self-adaptive QoS modelling, the increasing number of cloud
primitive can be accommodated by the primitives selection phase, which en-
sures only the significant primitives are used as inputs. This is achieved by
the proposed hybrid-learners approach for primitives selection, where the core
is an optimisation for information relevance and redundancy. Increasing the
number of primitives can enlarge the search space for primitives selection. To
this end, in this thesis, we have applied an efficient randomised optimisation
algorithm to this problem, but more sophisticated algorithms can be applied
when there is a need. As for the QoS function training process, the primitives
selection phase have ensured a less but more useful number of primitives in the
model, which have presumably improve the efficiency of the machine learning

algorithms in training and calculation of the model.

— The number of cloud primitives can affect the scalability of the self-aware and
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self-adaptive region clustering approach, which is used to determine the gran-
ularity of control. However, since the approach performs clustering in a linear
manner, the correlation between the overhead and the number of primitives is

also linear.

— The search space in autoscaling decision making increases dramatically when
the number of cloud primitives increases. However, one of the benefits of
the proposed MOACO is that it can efficiently resolve NP-hard problems and
achieve good results by exploring in diversified parts of the search space, lead-
ing to less effort on computation. In the decision making for cloud autoscaling,
the search space consists of [[;_, ¢; possible decisions, whereby ¢; is the num-
ber of configured value for the ith control primitives; n is the total number
of control primitives for all dependent objectives. MOACO only need to ex-
amine Y " ¢; + i - a - r decisions in the worst case, where 4, a and r are the
number of iteration, the number of ants and the number of runs for an ant
to find satisfactory decision, respectively. In particular, > " , ¢; decisions are
searched when calculating the heuristics information while the remaining ¢-a-r
decisions are examined when updating the pheromones, which is an iterative
process throughout the algorithm. Taking the initial setup of the experiment
in Chapter 7] as an example, the complete search space has 7.29 x 10! decisions
while MOACO at most need to examine 7.5141 x 10*, which is only around

1.02 x 107°% of the search space.

e Scalability with respect to the number of cloud-based services and their

objectives

— Increasing the number of cloud-based services and their objectives can cause

larger overhead for the self-aware and self-adaptive modelling process on the
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root domain (e.g., Dom0). However, we believe that such computational re-
quirements can be fulfilled by modern physical machines. In addition, it is also
possible to setup dedicated machine(s) for QoS modelling process. Finally,
applying admission control, which restricts the number of services on a PM,
can be another possible solution. As for the self-aware and self-adaptive region
clustering approach for granularity of control, its scalability tends to be linear

to the number of cloud-based services and their objectives.

The scalability of self-aware and self-adaptive decision making approach is
related to the number of dependent objectives, thus it can work in large number
of services. This is because increasing the number of services may not influence
the approach, as the region clustering approach distributes the independent
objectives of these services into different decision making processes, which run
independently. In other words, a large number of service may not affect the
decision making as long as the number of dependent objectives in a process
does not change significantly. If it is known that the number of dependent
objective will be largely increased, there are additional mechanisms to improve
scalability, e.g., by using admission control to restrict the number of service
on a VM and the VMs on a PM, which will limit the number of dependent
objectives in one process. However, in cases the additional mechanisms are
not applicable, the proposed decision making approach can still be tuned the
configurations of MOACO. This can be achieved by profiling with respect to
the possible number of dependent objectives. It is worth noting that since we
consider the trade-offs caused by QoS interference, we have evaluated up to 30
objectives in one decision making process, which itself is a significantly larger
scale as when compared to the small scale (e.g., 2 - 4 objectives) in existing

work.
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— In particular, our compromise-dominance has similar runtime complexity to the
pareto-dominance based sort in NSGA-II, but with some extra overheads on
nash-dominance and distance of decisions. However, unlike NSGA-II that sorts
in each iteration during the optimisation, we only need to run compromise-

dominance once after the optimisation of MOACO completes.

8.3 Flexibility

By flexibility, we refer the ability of the autoscaling system to cope with the various het-
erogeneous scenarios and to incorporate future requirements. In this thesis, the proposed
autoscaling framework is designed in a way that aims for the maximal generality. In

particular, flexibility can be discussed with respect to the following:

e The framework does not bound to a specific scenarios, environment or cloud vendor.

e We have used control primitives and QoS to refer to the control knobs and quality
indicator respectively. Therefore, we do not restrict to any assumptions on these

elements.

e The framework promotes flexibility in the way that it can support various architec-

tural styles for the cloud-based services and their requirements.

e The multi-learners approach for QoS modelling can be extended to have more candi-
date learning algorithms for accuracy, or can be shrinked to less number of learners

for efficiency.

8.4 Complexity of Application

Conventional autoscaling system requires to define the right conditions and actions map-

ping. However, by introducing the principle of self-awareness and the related algorithms,
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these mapping are no longer needed without compromising the effectiveness in our au-
toscaling system. These observations are evident by various experiments, as we have
shown in earlier Chapters.

In our framework, apart from the general configuration of the underlying algorithms,
the only offline domain knowledge required are the QoS attributes, cost models, cloud
primitives, services and their requirements (i.e., SLA and budget). The domain knowledge
is often required to be setup once, it then can be easily maintained and updated online
in an automatic manner. This eliminates the need for heavy human intervention, which
is can be complex and error-prone.

However, to better ensure the quality of autoscaling, the following offline decisions

need to be made for extreme scenarios, e.g., time-critical cloud-based services.

e The self-aware and self-adaptive QoS modelling approach runs periodically in order
to capture dynamic QoS sensitivity. Generally, setting the frequency level to minute
interval is the common practice for many cloud-based services (e.g., [00] [105] [87]).
However, in some extreme scenarios (e.g., real-time critical cloud-based services),
if the modelling is too frequent, this may entail large demand on resources for
computing the model. In addition, model training may not be completed within its
interval. In contrast, too low frequency may fail to capture the actual and evolving
diversity of QoS. Consequently, arriving on the right frequency encompasses a trade-
off between efficiency and accuracy. The right frequency level can be determined by
analysing the characteristics of cloud-based service and or empirically deciding on

the frequency level.

e We observed that in some cases when Dom0 suffers contention, the performance of
the QoS modelling approach could become worse. However, this can be eliminated
by determining the proper amount of provision for Dom0 offline. In the real-world

cases, it is still possible to follow the same approach. More precisely, the cloud
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provider can specify the required computational resources for Dom0 in relation to
the total number of service-instances on each PM type. This can be achieved offline
by running dummy applications or using historical data. Such decision may influence

the VM to PM consolidation strategy, which is out of the scope of this thesis.

e As mentioned, the MOACO can be tuned to improve the quality of optimisation in
the decision making process. This can be easily achieved through profiling taking
into account the possible number of dependent objectives. In particular, a set of
configurations can be applicable for a range types of cloud-based services, providing

that they exhibit similar characteristics.

8.5 Practical Deployment

Practical deployment is concerned with how difficult the proposed framework can be used
in a real world scenarios, and what are the possible ways of deploying the framework in
a running cloud environment. Intuitively from Chapter [3] the proposed self-aware and
self-adaptive autoscaling framework is designed in a way that it can be seamlessly and
transparently deployed on a given cloud scenario. Practically, we strive to enable the
maximum flexibility of the framework, that is to say, it can be either fully deployed to
form a standalone autoscaling system or be partially deployed to consolidate existing
autoscaling system using only one (or more) of the inclusive components. An example
of the scenario where the framework is used as a standalone system has been shown in
Figure

As we have demonstrated in previous chapters, the self-aware autoscaling system can
acquire the necessary runtime knowledge and adapt itself to dynamically optimise the
QoS and cost for all cloud-based services, which would eventually lead to better elasticity

in the cloud.

237



Cloud Enviroment

End User PM M
Autoscaling System <
QoS Region Decision PM
Modeler Controller Maker
End User

Virtualization

Cloud-Based Services PM

YVvY

End User

Figure 8.1: The Full Deployment Style of Self-Aware and Self-Adaptive Autoscaling
Framework.

There are scenarios where it is difficult to replace the entire autoscaling system due
to the transition to self-aware autoscaling is too complex and expensive. For example,
suppose that there is a legacy autoscaling system running in the cloud and that the
system is currently working fine but require expensive human intervention to maintain.
However, it might require a large labour cost in order to replace the system with our
self-aware autoscaling framework. In addition, the capacity of cloud infrastructure is
rather restricted and thus there is limited additional resources for fully realising self-aware

autoscaling. As a result, one solution is to take partial components from our framework
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and attach them to replace only certain components from the existing system. This is
possible as the contributions of this thesis are associated with different independent and
internal selves, which are designed as seamlessly connected self-aware components. Two
concrete examples are illustrated in Figure [8.2] and [8.3]

As shown in Figure [8.2] the QoS Modeller is used to consolidate a simple exhaustive
search algorithm for autoscaling decision making. Although such approach may be limited
in reasoning about trade-offs, the improved QoS models can still help to improve the
decision making by providing more accurate assurance about the effects of decision on
objectives. In Figure |8.3, we show another example where the Decision Maker is used
in conjunction with an analytical modelling approach. In such case, although the QoS
models may not be sufficiently accurate, the decision making process can still make the
best effort to resolve the trade-offs, and produce the decisions that tend to achieve well-
compromised trade-offs.

In summary, we have reviewed the proposed framework and some of the important
factors that might affect its effectiveness. We have identified some limitations and dis-
cussed the potential solutions to them. Some of those solutions can lead to interesting

directions of future work, as we will discuss in the next Chapter.
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Figure 8.2: The Partial Deployment Style of Self-Aware and Self-Adaptive Autoscaling
Framework Containing Only QoS Modeller.
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Figure 8.3: The Partial Deployment Style of Self-Aware and Self-Adaptive Autoscaling
Framework Containing Only Decision Maker.
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CHAPTER 9
CONCLUSION REMARKS AND FUTURE
DIRECTIONS

9.1 How the Research Questions are Addressed

This thesis is driven by numbers of research questions as we have discussed in Chapter
[ In the following, we systematically review how these research questions are addressed

throughout the thesis, as summarised in Table [0.1]

Table 9.1: Summary on How the Research Questions are Addressed

R@ 1.1. How to incorporate and map the self-awareness capabilities to autoscaling in
the cloud?

e In Chapter [3] we have systematically mapped the key components in autoscaling
to different self-awareness capabilities, which is considered at different levels, e.g.,
time-awareness etc. The mapping provides a concise understanding about how self-
awareness can be applied to resolve the challenges for autoscaling in the cloud.
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R@ 1.2. How to architect self-aware autoscaling system? What are the benefits we can
expect from this enriched architecture?

e Drawing on the mapping between self-awareness and cloud autoscaling, the au-
toscaling architecture has been enriched with self-awareness capabilities. The map-
ping posses high intuition on what are the required level of knowledge at a given
logical aspect of the system (e.g., QoS modelling), as we have shown in Chapter .
This information leads to better design and selection of the underlying algorithms
and techniques to enable self-awareness.

The key benefit of the self-aware autoscaling architecture is that it realises bi-
directional adaptation. That is to say, it is not only able to adapt the underlying
cloud-based services and VMs, but also capable to further consolidate itself by acquir-
ing the knowledge about itself and the environment through different self-awareness
capabilities. Such consolidations aim for more accurate QoS models, better granu-
larity of control and better trade-off decisions.

RQ@ 2.1. How to dynamically select the important, yet uncertain cloud primitives (e.g.,
software configurations, hardware resources and environmental conditions) when mod-
elling the QoS for cloud-based services? Which cloud primitive tend to be significant
while which are the irrelevant ones? When these cloud primitives should be considered
in the models?

e In Chapter [4 and 5, we have quantified the relative importance and significance
of primitives to QoS attributes using symmetric uncertainty. We have conducted
an in-depth analysis on the correlations between selected cloud primitives and the
model accuracy; the results suggest that in general, the direct primitives (i.e., those
that directly influence the QoS) tend to be more relevant than the indirect ones
(those that only provide information about QoS interference). However, we found
no evidence that can tell what dimensions of primitives tends can be constantly
significant or at what point in time they can be significant. Instead, the important
primitives affecting QoS tend to be dynamic and uncertain.

Therefore, we propose a self-aware and self-adaptive technique, namely hybrid dual-
learners, to determine which and when the cloud primitives correlates with the QoS
on the fly using information theory [130]. The experiments result show that it can
improve the overall accuracy and achieves better stability.
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RQ 2.2. How to dynamically model and quantify the uncertain magnitude of cloud
primitives in the correlation?

e In Chapter [] and 5] we have demonstrated that machine learning algorithms
renders themselves neat solution to this problem. We show, by means of experimental
evaluations, that they are capable to produce effective QoS models. However, we have
also found that there is no single learning algorithms that can constantly outperform
the others across a range of possible scenarios.

R@ 2.3. How to incorporate dynamic and uncertain information about QoS interference
into the models?

e In Chapter [5], we have codified two classes of QoS interference at both service
and VM levels. Given the flexibility of the proposed QoS modelling approach, infor-
mation about interference can be Incorporated into the models by using the related
primitives as inputs. The hybrid dual-learners in primitives selection phases would
filter those that are not significant while only keeping the important ones.

RQ 2.4. How to ensure the accuracy of the QoS models?

e In Chapter [5, we have considered both information relevance and redundancy
when selecting the cloud primitives as model inputs. This design, as we have demon-
strated in Chapter [5], leads to better accuracy and stability while keeping the model
complexity adequate. In addition, we have used a self-aware and self-adaptive solu-
tion,namely adaptive multi-learners, to dynamically model how the cloud primitives
correlates with the QoS. The proposed solution can continually guarantee accuracy
models by selecting the best learning algorithm and its resulted model during pre-
diction in cloud.

R@Q 3.1. What are the effects of control granularity on globally-optimal result (i.e.,
result with respect to QoS and cost of all cloud-based services) and the overhead in
cloud?

e In Chapter [6], we have shown that a coarse granularity of control in cloud au-
toscaling (e.g., cloud level) can lead to global benefit, but the overhead is likely to
be high. On the other hand, finer granularity (e.g., service level) reduces the over-
head as it usually assume local optimum, however, multiple local optimum may not
necessarily imply a globally-optimal benefit.
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RQ@ 3.2. Whether local control (e.g., service level) can achieve similar global benefit to
the global control (e.g., cloud level)?

e In Chapter [0 we have demonstrated that local control can indeed achieve similar
global benefit to the global control, as long as the granularity is divided according
to the dependency of objectives. That is to say, multiple local optimums can lead to
global optimum if there is no dependency between different local optimums.

R@ 3.3. How to handle the dynamics and uncertainty associated with the granularity
of control in cloud?

e In Chapter[6] we have used a self-aware and self-adaptive reigning mechanism that
dynamically determine the granularity of control through knowing which and how
many objectives need to be considered in the same decision making process. Each
of the resulted region is regarded as independent decision making process, and they
can run simultaneously. The quantitative results show that the approach achieves
global optimum (or near-optimum) while reducing the overhead of autoscaling.

R@ 4.1. How to dynamically search for the uncertain trade-off decisions, considering
the naturally conflicted objectives and QoS interference?

e In Chapter [7, we have formulated the decision making problem as a discrete
multi-objective optimisation problem, where the aim is to search for the decisions
that optimise different objectives subject to SLA and budget constraints. Given that
the possible decisions can form a incredibly large space, this problem is essentially
NP-hard. Therefore, we have leveraged on metaherustic algorithm, which is often
dynamic and suitable for runtime scenario, to achieve near-optimal solution within
polynomial time. Since the QoS models contain information about QoS interfer-
ence, the decision making process can also handle the trade-offs caused by the QoS
interferences.
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RQ@ 4.2. How to dynamically reason about the effects of decisions on QoS and cost
objectives, and the uncertain trade-offs considering their requirements?

e In Chapter [7, we have proposed a self-aware and self-adaptive decision making
approach enabled by Multi-Objective Ant Colony Optimisation (MOACO), which is
designed to reason about and optimise the possible trade-offs decisions for autoscal-
ing in the cloud. This approach eliminates the need for specifying weights in the
objective formulation and capable to handle trade-off caused by naturally conflicted
objectives and QoS interference. MOACO can explore more trade-offs information
than the rule, single objective and weighted-sum objectives based decision making
approaches. In particular, MOACO distincts from the existing MOGA based ap-
proach in the sense that, instead of evaluating the overall quality of decisions for all
the objectives during the optimisation, it performs in a way that similar to conduct
many single objective optimisations in one run by using aggregative heuristics and
different pheromone structures. This design aims for better optimality and diversity
for a large number of objectives. Experiments result suggest that, as when com-
pared with state-of-the-art approaches, the MOACO achieves significantly smaller
SLA violation and leads to better, more stable QoS performance even when the
requirements are complied; while the overhead is still acceptable.

RQ 4.3. How to quantify the extent of compromises in the trade-off? How to dynam-
ically determine the well-compromised trade-off?

e In Chapter [7] we design a dynamic triple mechanism, namely compromise-
dominance, for finding well-compromised trade-offs based on superiority and fairness
of the decisions. The former is measured by pareto-dominance [67], and the latter is
achieved via nash-dominance [108] and the distance of decision measurement. The
mechanism is a sequential process where a set of decisions is filtered based on their
superiority, and then the fairness. Eventually, the resulted set contains the decisions
that achieve well-compromised trade-offs. Experimentally, we have shown that it
helps to achieve better quality of trade-offs in terms of both the number of objec-
tive favoured and the extents to which they are optimised. Notably, by separating
MOACO and compromise-dominance, the MOACO is encouraged to explore more
information about the trade-offs surface while saving computational efforts.

Recall that the main research question of this thesis is:

How can self-awareness and the related algorithms be incorporated into the
process of elastically autoscaling cloud-based services, such that the autoscal-

ing system is able to handle runtime dynamics, uncertainties and trade-offs
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exhibited in the cloud? What are the benefits of self-awareness and to what
extent can it be beneficial, when compared to approaches with no or limited

self-awareness?

Clearly, the developments of the aforementioned research questions have converged to-
wards the answer of the first half question. The second half question has been addressed
through various experimental and quantitative analysis as we discussed in previous chap-
ters. In particular, the key benefit of introducing self-awareness in cloud autoscaling is the
ability to handle dynamics, uncertainty and heterogeneity in cloud without heavy human
intervention and design time knowledge. Further, we have demonstrated that in contrast
to state-of-the-art approaches that have no or limited self-awareness, the improvements
in self-aware autoscaling are vast, including more accurate QoS models, better stability of
the models against different QoS trends, achieving global optimum with reduced overhead,
better quality of trade-offs and better compliance of SLA and budget requirements.

Although we have showed that the overhead associated with self-awareness tends to
be acceptable, it is still more computationally expensive than some existing approaches
(e.g., rule-based autoscaling). Indeed, there is always a trade-offs between the benefits that
self-awareness bring to autoscaling and the extra overhead that it introduces. However,
we believe that given the increasingly complex cloud computing environment, making
autoscaling self-aware will eventually become an inevitable requirement as it has many

potentials to fully unlock the elastic nature of cloud.

9.2 Future Directions

This thesis reveals several future directions to further consolidate the effectiveness of cloud

autoscaling. They are described as below:
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9.2.1 Incorporating Workload and Demand Prediction with QoS
Modelling in the Cloud

As we have mentioned in Chapter [ and [5] , QoS modelling offers the fundamentals to
reason about the effects of autoscaling decisions and the related trade-offs. Although
the QoS models can be used to enable proactive autoscaling, it does not capture the
patterns and seasonality related to the workload and demand fluctuations. To this end,
demand and workload prediction can be combined with QoS modelling for more accurate,
proactive autoscaling.

In addition, incorporating demand and workload prediction can be helpful to reason
about whether the autoscaling decision making process should be triggered, and hence-
forth achieving better sustainability and stability in cloud. This is because in certain
cases, the benefits grained by autoscaling is not significant compared with its compu-
tational overhead, especially when the spiked changes in the environment are extremely
short-term. There has been autoscaling system that relied on workload and demand pre-
diction, e.g., [88], but they rarely combine them with QoS modelling. We advocate that
self-awareness can provide useful insights on how to reason about whether the demand
and workload prediction are necessary, and what are the added values in addition to the
QoS models.

9.2.2 Considering Delays of Scaling Actions

Vertical scaling can be achieved with negligible delays, but horizontal scaling often incur
larger overhead. Therefore, considering delays in horizontal scaling can further improve
the effectiveness of autoscaling. Considering the delays also arise an interesting trade-offs
between horizontal and vertical scaling when autoscaling decisions have been made. In
this thesis, we have assumed that vertical scaling takes higher priority than the horizontal
scaling and the possible configured values are within a range, which is gradually updated.

This design aims to handle majority of the cloud scenarios where there is a clear transition
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when the environment and demand changes. However, in case there is extremely large and
sudden changes in the demand, such design may obstruct the self-adaptivity of autoscaling
system, since it is often more preferable to go directly to horizontal scaling.

Future research can combine the reasoning about delays of scaling action with the
autoscaling decision making process, or alternatively, separate such reasoning based upon
the identified decision. This can be better tackled through self-awareness.

9.2.3 Combining VM consolidation and Cloud Autoscaling

VM consolidation in the cloud studies the problems of mapping between VMs and PM,
as well as the co-hosted VMs. Often, these problems assume that the autoscaling decision
has been provided or can be easily obtained by simple profiling process. Clearly, VM con-
solidation is related to horizontal scaling and it plays an integrals role to the VM-level QoS
interference. We believe that, in order to improve the effectiveness of autoscaling, future
research for VM consolidation problems, notably their interaction with cloud autoscaling,

are necessary.

9.2.4 Autoscaling with Cloud Federation

This thesis has explicitly focused on single cloud scenarios, in which we assume that the
capacity of cloud is able to handle the full demand of cloud-based services. However, de-
pending on the scale and evolving reputation of the cloud provider, it may be inevitable
for switching to alternative cloud providers with larger scale and better reputations. The
selection of cloud providers problem has been widely studied, however the linkage be-
tween cloud autoscaling and cloud providers selection is remain unclear. Future research
should focus on the challenge about how to dynamically reason about when it is needed
to scale across multiple cloud providers, instead of autoscaling within the existing one.
Investigating how self-awareness can be useful for this problem, especially in the context
of cloud market where there is an even larger degree of heterogeneity, is an interesting

starting point.
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9.2.5 Handling Energy Consumption and Economic Profit

Energy consumption is becoming an increasingly important topic for cloud computing.
Although not directly resolving energy consumption, this thesis preserves a foundations
for achieving energy aware autoscaling. This is because the flexibility of the proposed
QoS and cost models, which is often correlated with the required energy. Nevertheless,
further studies are required, particularly for modelling the correlation between cost and
the consumed energy.

Another interesting future direction is to perform cloud autoscaling with the aim to
maximising economic profit of the service providers and cloud providers. This problems
can be studied from an economic perspective, where both the buyers (service providers)
and seller (cloud providers) aim to optimise their own profit. The challenge for future
researches would be how to resolve the trade-off between buyers’ profits and that of
the seller in such a way that a global economic equilibrium is reached. Achieving self-

awareness from an prospective of economic efficiency can be a promising solution.

9.3 Closing Remarks

This thesis makes a novel and timely contribution to the field of cloud autoscaling by
presenting a self-aware and self-adaptive autoscaling framework. The thesis provides in-
depth study and solutions that use the principles of self-awareness and related algorithms
to the problems in the absence of closely related work. We believe that the proposed
framework can provide many useful insights on how to better engineer self-aware cloud
autoscaling system in relation to the architecture, QoS modelling, granularity of control
and decision making. The conducted experiments demonstrate the effectiveness of the
framework in handling dynamics, uncertainty, QoS interference and trade-offs that are
associated with the autoscaling process. The contributions of this thesis have elaborated
on different aspects, including software and systems modelling, software architecture and

decision making and planning, which eventually advances the understanding of using self-
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awareness in cloud autoscaling. We hope that our results will motivate further research
for more intelligent cloud autoscaling and its interaction with the other problems in the

cloud.
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APPENDIX A
SPECIFICATION AND EXAMPLES OF
SELF-AWARE PATTERNS

The self-awareness capabilities describe the different types of self-knowledge which a sys-
tem may possess and learn. Subsequently, the presence of these different types of knowl-
edge may lead to different classes of behaviours being possible. This categorisation of
self-awareness capabilities as patterns has the possibility to ensure that, when design-
ing self-aware systems, only relevant types of knowledge are included, and their inclusion
justified by identified benefits. There is no need for a system to become unnecessarily com-
plex, learning and maintaining knowledge which does nothing to advance the outcomes
for that system, generating only overhead. Consequently, design process for self-aware
systems will need to take account of the necessity or otherwise of different capabilities of
self-awareness. The pattern notation is depicted in Figure [A.]]

Two types of connectors are used to express the logical and physical interactions.
physical connector means there is a direct interaction between two or more capabilities
(from the same or different node), and each capability is required to directly interact
with the others. Notably, physical connector (between different levels of awareness), or
the red arrow, particularly refers to the interactions for the self-awareness of different
types (e.g., goal and time awareness); in contrast, the other black solid arrows represent
the interactions for the self-awareness of the same type (e.g., the interaction-awareness
from different nodes). On the other hand, the logical connector does not require direct
interaction, but rather the data or control in the interaction is sent/received through the
other capabilities (e.g., Sensors and Actuators), which have the physical connector. For
instance, self-expression might be logically required to reach consensus amongst different
nodes, but such interaction is physically realised through Sensors and Actuators. The
benefit of additionally introducing the logical connector is that, when design a self-aware
capability where the communication protocol (e.g., local/remote function call, multi-cast
and broadcast etc) is not needed, the pattern can still show that such capability needs
to interact with the others. Thus, this provides the designers with a more precise view
about the architecture.

We have used multiplicity operator to represents how many capabilities and their
components (a capability can be realised in one or more components), including those
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E.S. — external sensor, E.A. — external actuator

S.E. — self-expression, In. A. — interaction awareness
T.A. — time-awareness, G.A. — goal-awareness

M.S.A — meta-self-awareness
S.A - stimulus-awareness

Figure A.1: The Notations for Self-Aware Patterns.

from different nodes, are involved in the interaction.There are three types of multiplicity
operators (mul_op):

e * expresses that the number of capability of the same type in the interaction is
restricted to at least one.

e 1 indicates that one and only one capability of the same type is permitted.

e 0 indicates that zero, one or many of the type specified is permitted in the interac-
tion.

It is worth noting that when the operator is 0, it means that the associated interaction can
be removed but does not represent that the corresponding capability can be eliminated. In
case a capability is interact with itself, e.g., a * on both sides of the intra-capability arrow
of a capability means that it can interact with the same capability implemented in other
nodes. To better clarify the operators, suppose that there is a physical interaction between
stimulus awareness and external sensors where the stimulus awareness is associated with 1
whereas the external sensors is associated *. This means that within the interaction, only
one stimulus awareness is permitted whereas the number of external sensors presented in
the interaction needs to be one or many. Other multiplicity arrangements can be similarly
interpreted.

In the following, we briefly discuss two patterns as examples, full details and the other
patterns can be found in our handbook [39].

e Coordinated Decision-Making Pattern

Decisions made by individual self-aware nodes in a group may be suboptimal due
to their limited view of the system and its operating environment. In applications
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Figure A.2: Coordinated Decision-making Pattern.

requiring near-optimal and consistent global decision making in a cooperative set-
ting, a more advanced architectural pattern may be required. In particular, such a
pattern should make it possible for nodes to synchronise their adaptation actions.

The coordinated decision-making pattern provides a means of coordinating actions
of multiple, interconnected self-aware nodes. Figure shows this pattern. It
differs from the basic pattern in that self-expressive nodes are linked to one another,
such that they are able to agree on what action to take. It is clear to see that the
coordinated decision-making pattern is a related pattern to the basic information
sharing pattern as they only differ on the self-expression capability. However, they
are designed to aim for different problems and forces, therefore such separation of
concepts paves a better way in pattern selection. The downside of this pattern is
that although nodes are able to form clusters and cooperate on what action to take,
they are unable to decide the timing of such actions, i.e. when to act.

Temporal Goal Aware Pattern

The knowledge of goals and time might not necessarily to be shared amongst nodes,
especially in cases where the optimisation of local goals could lead to acceptable
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Figure A.3: Temporal Goal Aware Pattern.

global optimum. As a result, the presence of interaction awareness capability could
cause extra overhead on the system. As shown in figure[A.3]the temporal goal aware
pattern solves this problem by removing the interaction awareness capability. In this
pattern, there is no notion of ’sharing’ as the nodes are not aware of any interactions
and therefore not aware of the presence of the other nodes. It is worth noting that
the absence of interaction awareness does not mean there is no interaction - nodes
and the environment could still interact with each other, but the nodes are not
aware of it.

The removal of interaction awareness implies that the nodes could be in inconsistent
state. The designer should carefully verify that such situation would not result in
violations of system requirements. In addition, the self-expression capability could
not use any information from other nodes when making decisions.

Meta-self-awareness is useful for managing the trade-off between various levels of
self-awareness and for modifying goals at run-time. Since reasoning at the meta level
is considered an advanced form of awareness that may be beneficial or necessary in
some contexts, we endorse meta-self-awareness as an optional capability for each
pattern and this provides the designer with better flexibility.
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APPENDIX B
ANALYSING THE EFFECTS OF
CUMULATIVE RELEVANCE AND
REDUNDANCY IN SELECTED PRIMITIVES
TO QOS MODEL ACCURACY

To verify whether the Assumption is valid for the case of QoS modelling in the cloud,
we have conducted a set of analytical experiments to evaluate how the accuracy changes
with respect to the changes of cumulative relevance and redundancy. In particular, while
keeping the total number of primitives and services unchanged, we gradually add more
relevant primitives as the selected inputs (from higher relevance to lower relevance) to the
modelling process. For each set of selected primitives, the model accuracy and cumulative
values are calculated by averaging the results from all 350 intervals in one run. We have
used all the three learning algorithms (i.e., ANN, ARMAX and RT) and assessed the
accuracy using SMAPE [58], calculated as shown in ([£.9). It has been shown that SMAPE
is intuitive, stable and more resilient to outliers than the other metrics [100].

We now explain the process of analysis in details by referring an example to simplify
the exposition. In particular, we report on the Response Time of a service- instance, but
similar results have been observed on many other instances. To avoid noise caused by the
irrelevant primitives, we have considered only relevant primitives in the analysis. Figure
shows how the accuracy tends to change with the cumulative distribution of selected
primitives in the modelling. Figure |B.2| expresses the changes of the cumulative average
of relevance (dash line) and redundancy (solid line) as the number of selected primitives
increases. Similarly, Figure shows the changes of the cumulative total of relevance and
redundancy with respect to the number of selected primitives. It is worth noting that,
it can be hard to interpret the cumulative relevance and redundancy using cumulative
total, as they are on significantly different scales, especially when the number of selected
primitives increase. Therefore, we have normalised the data in the way that the scales of
both values are in the range between 0 and 1.

We initiate the process by adding the direct primitives before the indirect ones as the
former can be relatively smaller in size, which causing minimal noise when the number of
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Figure B.1: The Fluctuation on Model Accuracy as the Number of Selected Primitives
Increase.

0.6

-=='Relevance
= Redundancy

0.5

0.4

0.3

0.2

Symmetric Uncertainty

0.1

0 10 20 30 40 50 60 70 80 90 100 110
Selected Primitives (%)

Figure B.2: The Fluctuation on Average Cumulative Relevance and Redundancy as the
Number of Selected Primitives Increase.

257



0.03 Rel ' : === Relevance
-=+'Relevance : ' "
—Redundancy 0.9 ; Redundancy
0.02 : 08
> '
E : c 07 '
£ : © !
e 1 Q 1
= ' 5 05
[3) ! o '
g 001 : 2 04
g ! GE) !
: 0.3 '
3 . c 03
o 0.01 : & 0.2 :
............ A 01 E
0o ' . i
° > 10 15 0 20 40 60 80 100

Selected Primitives (%)

Figure B.3: The Fluctuation on Total Cumulative Relevance and Redundancy as the
Number of Selected Primitives Increase.

primitives increases. In Figure[B.1],[B.2|and|B.3| the trend between 0 and 10% of the x-axis
shows the effects of adding direct primitives while the remaining shows the effect of adding
indirect ones. From Figure we can see that the increase of cumulative redundancy
tends to be larger than the increase of cumulative relevance, but they become close again
as they reach the 10%. We obtained similar results from Figure [B.3] for the cumulative
total of relevance and redundancy. This means that, if Assumption is true from 0% to
10%, then the error is expected to increase gradually and smoothly before it drops slightly
toward 10%. Nevertheless, we observed rather contradictory results on the accuracy curve
of Figure B.T}—for all the three learning algorithms, the error drops almost linearly from
0 to 10%, which means that in the direct primitives space, Assumption does not hold.

Next, we can see that similar result also occur at the initial stages when adding the
indirect primitives, particularly between 10% and 20% of the x-axis. Precisely, both Figure
and indicate that from around 13%, the cumulative relevance increase almost
linearly and the cumulative redundancy increase following a logarithmic behaviour. This
means that if Assumption is true, the error is expected to become larger from 13%.
This is contradicted with what is shown in Figure [B.I}—the error continues to drop till it
reaches the best point at around 13% to 17%, and the accuracy stabilises up to the 20%
x-axis. Given that the number of primitives from both the direct and indirect primitives
spaces is close (i.e., 10% of the total number of relevant primitives for each space), theses
observations reveal that for the inter direct and indirect primitive spaces, Assumption
does not hold either. In addition, the accuracy trend implies that a combination of
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all direct primitives and some indirect ones yields better accuracy as it is important to
consider interference in the modelling.

Finally at Figure[B.2] we can see that from 20% and onwards, the cumulative relevance
increases slightly and linearly whereas the cumulative redundancy tend to exhibit loga-
rithmic and nonlinear behaviour in its increase it increases from 20% and drops by 60%.
Similar trend can be observed from Figure [B.3}—at around 60%, the increasing slope of
cumulative redundancy becomes steeper towards the curve of cumulative relevance, which
keeps increasing linearly. As a result, if Assumption [5.1}is true, then the error should be-
come larger from 20% to 60%; while from 60% onward, the error should start to drop
slightly and smoothly. This is almost what we can observe from Figure for the three
learning algorithms. Since the effects of direct primitives becomes weaker (after 20%)
when more indirect primitives are involved in the modelling, the results indicate that in
the indirect primitives space, the Assumption [5.1]is indeed valid. Another observation is
that the model accuracy when using the direct primitives is generally better than using
of indirect primitives.

In summary of the experiments, we have obtained four major observations: (i) within
the direct primitives space, Assumption does not hold. This is due to the fact that
the direct primitives space contains different underlying primitives that directly influence
the QoS, hence they can usually provide different aspects of information about a QoS
attribute, which cannot be correctly quantified by cumulative SU value. Surprisingly, we
also found that (ii) for inter direct and indirect primitives space, Assumption does
not hold either; (iii) however, within the indirect primitives space, Assumption is
valid. We believe that the reason for observations (ii) and (iii) is due to the fact that
different direct primitives provide different aspects of information about the QoS and they
influence the QoS directly. Whereas all the indirect ones can only do so via interference
and contention; henceforth, they can only provide information on contention which can
be regarded as one aspect of information that influence QoS. Obviously, this aspect of
information is different to that in the direct primitive space. These observations also
imply that the cumulative SU values can only quantify the effects of primitives to model
accuracy, when they provide the same aspect of information. The final observation (iv) is
that, although the overall relevance in direct primitives space is smaller than that of the
indirect primitives space (as the former is smaller in size), the resulted model accuracy
when using direct primitives is generally better than the use of indirect ones. This is
a typical consequence of redundancy: the overall redundancy in the indirect primitives
space tends to cause more negative effects on model accuracy than that of the direct one.
Such observation means that even when redundancy is considered, the direct primitives
can be more important than the indirect ones in the modelling. However, we observed
that the best accuracy is achieved by the combination of direct and indirect primitives.
This means consider proper information of QoS interference in the modelling can be quite
beneficial for accuracy.
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Acronyms

APPENDIX C
(FLOSSARY

Table C.1: The Acronyms in The Thesis.

Description

QoS

Quality of Service, this is the non-functional attributes that a cloud-
based service contain, e.g., response time, throughput and reliabil-

ity.

CP

Control Primitives, this is the control knobs that realise autoscaling
in the cloud, e.g., number of threads, CPU and memory.

EP

Environmental Primitives, this is the dynamic and uncertain factors
that affect autoscaling in the cloud, e.g., the workload and size of
incoming tasks/jobs.

VM

Virtual Machine, this is the conceptual unit that contains certain
allocation of the resources in the cloud.

PM

Physical Machine, this is the machine that running in the cloud
infrastructure.

SU

Symmetric Uncertainty, this is a metric that used to measure the
relevance between two random variables. It is heavily used in Chap-
ter 4 and [5] for the QoS modelling approach.

ANN

Artificial Neural Network, this is a machine learning algorithm,
derived from biological neural networks, that is capable to model
complex nonlinear correlations. It is heavily used in Chapter 4] and
| for the QoS modelling approach.

S-ANN

Sensitivity aware Artificial Neural Network, this is the ANN that
improved by primitives selection approach.

C-ANN

Conventional Artificial Neural Network, this is the ANN that does
not use primitives selection approach.

RPROP

Resilient backpropagation, is a learning heuristic for supervised
learning in feedforward artificial neural networks.
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ARMAX

Auto-Regressive Moving Average with eXogenous inputs model,
this is a simple, but efficient machine learning algorithm that mod-
els linear correlations. It is heavily used in Chapter [4] and [5 for the
QoS modelling approach.

S-ARMAX Sensitivity aware Auto-Regressive Moving Average with eXogenous
inputs model, this is the ARMAX that improved by primitives se-
lection approach.

C-ARMAX Conventional Auto-Regressive Moving Average with eXogenous in-
puts model, this is the ARMAX that does not use primitives selec-
tion approach.

RT Regression Tree, this is a tree-liked machine learning algorithm. It
is heavily used in Chapter [f] for the QoS modelling approach.

SMAPE Symmetric Mean Absolute Percentage Error, this is the metric that
measures the percentage error in model prediction. It is also re-
silient to outliers.

RSD Relative Standard Deviation, this is the metric that measures how
fluctuated a QoS trend tends to be.

HYBRID The proposed cloud primitives selection approach that using hybrid
dual-learners, as described in Chapter [5|

SINGLE-MR | The compared single-learner primitives selection approach that re-
lies on maximal relevance for all the primitives space, as described
in Chapter |3|

SINGLE- The compared single-learner primitives selection approach that re-

MRMR lies on maximal relevance and minimal redundancy for all the prim-
itives space, as described in Chapter |5|

SINGLE- The compared single-learner primitives selection approach that re-

MRMR lies on maximal relevance and minimal redundancy for all the prim-
itives space, as described in Chapter |5|

MANUAL The fixed and offline primitive selection approach, as described in
Chapter [5]

SINGLE- The compared single-learner primitives selection approach that re-

MR-DIRECT | lies on maximal relevance and minimal redundancy for all the direct
primitives space only, as described in Chapter [5|

ADAPTIVE | The proposed multi-learners approach for QoS function training, as
described in Chapter [5

MOACO Multi-Objective Ant Colony Optimization, this is the proposed
search-based algorithm for optimizing autoscaling decisions.

CD Compromise-Dominance, this is the proposed mechanism to search
for well-compromised trade-off decisions.

MOGA Multi-Objective Genetic Algorithm, this is the compared algorithm

for optimizing autoscaling decisions using MOGA.
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RULE This is the compared approach for optimizing autoscaling decisions
using predefined if-conditions-then-action mapping.

HILL This is the compared approach for optimizing autoscaling decisions
using hill-climbing search algorithm.

RANDOM This is the compared approach for optimizing autoscaling decisions
using randomised search algorithm.
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